BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33836818)

  • 1. Bioprospecting of wild type ethanologenic yeast for ethanol fuel production from wastewater-grown microalgae.
    Romero-Frasca E; Velasquez-Orta SB; Escobar-Sánchez V; Tinoco-Valencia R; Orta Ledesma MT
    Biotechnol Biofuels; 2021 Apr; 14(1):93. PubMed ID: 33836818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments.
    Choudhary J; Singh S; Nain L
    J Biosci Bioeng; 2017 Mar; 123(3):342-346. PubMed ID: 27856231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeasts in sustainable bioethanol production: A review.
    Mohd Azhar SH; Abdulla R; Jambo SA; Marbawi H; Gansau JA; Mohd Faik AA; Rodrigues KF
    Biochem Biophys Rep; 2017 Jul; 10():52-61. PubMed ID: 29114570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp.
    Wang H; Ji C; Bi S; Zhou P; Chen L; Liu T
    Bioresour Technol; 2014 Nov; 172():169-173. PubMed ID: 25260180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residual sugar from microalgae biomass harvested from phycoremediation of swine wastewater digestate.
    Michelon W; Pirolli M; Mezzari MP; Soares HM; da Silva MLB
    Water Sci Technol; 2019 Jun; 79(11):2203-2210. PubMed ID: 31318358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of ethanol production using newly isolated ethanologenic yeasts.
    Tesfaw A; Oner ET; Assefa F
    Biochem Biophys Rep; 2021 Mar; 25():100886. PubMed ID: 33490643
    [No Abstract]   [Full Text] [Related]  

  • 7. Simultaneous fermentation of biomass-derived sugars to ethanol by a co-culture of an engineered Escherichia coli and Saccharomyces cerevisiae.
    Wang L; York SW; Ingram LO; Shanmugam KT
    Bioresour Technol; 2019 Feb; 273():269-276. PubMed ID: 30448678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic improvement of native xylose-fermenting yeasts for ethanol production.
    Harner NK; Wen X; Bajwa PK; Austin GD; Ho CY; Habash MB; Trevors JT; Lee H
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):1-20. PubMed ID: 25404205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening for L-arabinose fermenting yeasts.
    Dien BS; Kurtzman CP; Saha BC; Bothast RJ
    Appl Biochem Biotechnol; 1996; 57-58():233-42. PubMed ID: 8669899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production.
    Pancha I; Chokshi K; Maurya R; Bhattacharya S; Bachani P; Mishra S
    Bioresour Technol; 2016 Mar; 204():9-16. PubMed ID: 26771924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol.
    Ho NW; Chen Z; Brainard AP; Sedlak M
    Adv Biochem Eng Biotechnol; 1999; 65():163-92. PubMed ID: 10533435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulosic fuel ethanol: alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2003; 105 -108():457-69. PubMed ID: 12721468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exceptional hexose-fermenting ability of the xylitol-producing yeast Candida guilliermondii FTI 20037.
    Wen X; Sidhu S; Horemans SKC; Sooksawat N; Harner NK; Bajwa PK; Yuan Z; Lee H
    J Biosci Bioeng; 2016 Jun; 121(6):631-637. PubMed ID: 26596373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved strains of recombinant Escherichia coli for ethanol production from sugar mixtures.
    Lindsay SE; Bothast RJ; Ingram LO
    Appl Microbiol Biotechnol; 1995 Apr; 43(1):70-5. PubMed ID: 7766137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain.
    Mattam AJ; Kuila A; Suralikerimath N; Choudary N; Rao PV; Velankar HR
    Biotechnol Biofuels; 2016; 9():157. PubMed ID: 27462368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis.
    Ali SS; Wu J; Xie R; Zhou F; Sun J; Huang M
    PLoS One; 2017; 12(7):e0181141. PubMed ID: 28704553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts.
    Kumari R; Pramanik K
    Appl Biochem Biotechnol; 2012 Jun; 167(4):873-84. PubMed ID: 22639357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylanolytic and Ethanologenic Potential of Gut Associated Yeasts from Different Species of Termites from India.
    Tiwari S; Avchar R; Arora R; Lanjekar V; Dhakephalkar PK; Dagar SS; Baghela A
    Mycobiology; 2020 Oct; 48(6):501-511. PubMed ID: 33312017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fermentation to ethanol of pentose-containing spent sulphite liquor.
    Yu S; Wayman M; Parekh SK
    Biotechnol Bioeng; 1987 Jun; 29(9):1144-50. PubMed ID: 18576569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous ethanol production from wheat straw hydrolysate by recombinant ethanologenic Escherichia coli strain FBR5.
    Saha BC; Cotta MA
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):477-87. PubMed ID: 21234754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.