These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33837210)

  • 1. A biomimetic neural encoder for spiking neural network.
    Subbulakshmi Radhakrishnan S; Sebastian A; Oberoi A; Das S; Das S
    Nat Commun; 2021 Apr; 12(1):2143. PubMed ID: 33837210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A MoS
    Chien YC; Xiang H; Shi Y; Duong NT; Li S; Ang KW
    Adv Mater; 2023 Jan; 35(2):e2204949. PubMed ID: 36366910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.
    Hao Y; Huang X; Dong M; Xu B
    Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable low energy, compact and high performance neuromorphic circuit for spike-based synaptic plasticity.
    Rahimi Azghadi M; Iannella N; Al-Sarawi S; Abbott D
    PLoS One; 2014; 9(2):e88326. PubMed ID: 24551089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and differences.
    He W; Wu Y; Deng L; Li G; Wang H; Tian Y; Ding W; Wang W; Xie Y
    Neural Netw; 2020 Dec; 132():108-120. PubMed ID: 32866745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance deep spiking neural networks via at-most-two-spike exponential coding.
    Chen Y; Feng R; Xiong Z; Xiao J; Liu JK
    Neural Netw; 2024 Aug; 176():106346. PubMed ID: 38713970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancements in Algorithms and Neuromorphic Hardware for Spiking Neural Networks.
    Javanshir A; Nguyen TT; Mahmud MAP; Kouzani AZ
    Neural Comput; 2022 May; 34(6):1289-1328. PubMed ID: 35534005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backpropagation-Based Learning Techniques for Deep Spiking Neural Networks: A Survey.
    Dampfhoffer M; Mesquida T; Valentian A; Anghel L
    IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):11906-11921. PubMed ID: 37027264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A TTFS-based energy and utilization efficient neuromorphic CNN accelerator.
    Yu M; Xiang T; P S; Chu KTN; Amornpaisannon B; Tavva Y; Miriyala VPK; Carlson TE
    Front Neurosci; 2023; 17():1121592. PubMed ID: 37214405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges.
    Dutta S; Schafer C; Gomez J; Ni K; Joshi S; Datta S
    Front Neurosci; 2020; 14():634. PubMed ID: 32670012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware.
    Zou C; Cui X; Kuang Y; Liu K; Wang Y; Wang X; Huang R
    Front Neurosci; 2021; 15():694170. PubMed ID: 34867142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic Neuromorphic Sensory System via Electrolyte Gated Transistors.
    Li S; Gao L; Liu C; Guo H; Yu J
    Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is Neuromorphic MNIST Neuromorphic? Analyzing the Discriminative Power of Neuromorphic Datasets in the Time Domain.
    Iyer LR; Chua Y; Li H
    Front Neurosci; 2021; 15():608567. PubMed ID: 33841072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks.
    Xu Y; Zeng X; Han L; Yang J
    Neural Netw; 2013 Jul; 43():99-113. PubMed ID: 23500504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rectified Linear Postsynaptic Potential Function for Backpropagation in Deep Spiking Neural Networks.
    Zhang M; Wang J; Wu J; Belatreche A; Amornpaisannon B; Zhang Z; Miriyala VPK; Qu H; Chua Y; Carlson TE; Li H
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1947-1958. PubMed ID: 34534091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supervised training of spiking neural networks for robust deployment on mixed-signal neuromorphic processors.
    Büchel J; Zendrikov D; Solinas S; Indiveri G; Muir DR
    Sci Rep; 2021 Dec; 11(1):23376. PubMed ID: 34862429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Demonstration of Supervised Learning in Spiking Neural Networks with Phase-Change Memory Synapses.
    Nandakumar SR; Boybat I; Le Gallo M; Eleftheriou E; Sebastian A; Rajendran B
    Sci Rep; 2020 May; 10(1):8080. PubMed ID: 32415108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.