These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33837561)

  • 1. Raffinose accumulation and preferential allocation of carbon (
    Naguib WB; Divte PR; Chandra A; Sathee L; Singh B; Mandal PK; Anand A
    Physiol Plant; 2021 Dec; 173(4):1421-1433. PubMed ID: 33837561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Physiological and Proteomic Analysis of Two Sugar Beet Genotypes with Contrasting Salt Tolerance.
    Wang Y; Stevanato P; Lv C; Li R; Geng G
    J Agric Food Chem; 2019 May; 67(21):6056-6073. PubMed ID: 31070911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Wide Identification of Na
    Wu GQ; Wang JL; Li SJ
    Genes (Basel); 2019 May; 10(5):. PubMed ID: 31137880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots.
    Liu L; Wang B; Liu D; Zou C; Wu P; Wang Z; Wang Y; Li C
    BMC Plant Biol; 2020 Apr; 20(1):138. PubMed ID: 32245415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na/H antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots.
    Liu H; Wang Q; Yu M; Zhang Y; Wu Y; Zhang H
    Plant Cell Environ; 2008 Sep; 31(9):1325-34. PubMed ID: 18518917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress.
    Wang Y; Stevanato P; Yu L; Zhao H; Sun X; Sun F; Li J; Geng G
    J Plant Res; 2017 Nov; 130(6):1079-1093. PubMed ID: 28711996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome Analysis of Salt-Sensitive and Tolerant Genotypes Reveals Salt-Tolerance Metabolic Pathways in Sugar Beet.
    Geng G; Lv C; Stevanato P; Li R; Liu H; Yu L; Wang Y
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31775274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium and proline accumulation as osmoregulators in tolerance of sugar beet genotypes to salinity.
    Pakniyat H; Armion M
    Pak J Biol Sci; 2007 Nov; 10(22):4081-6. PubMed ID: 19090283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. External potassium (K(+)) application improves salinity tolerance by promoting Na(+)-exclusion, K(+)-accumulation and osmotic adjustment in contrasting peanut cultivars.
    Chakraborty K; Bhaduri D; Meena HN; Kalariya K
    Plant Physiol Biochem; 2016 Jun; 103():143-53. PubMed ID: 26994338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo transcriptome assembly and identification of salt-responsive genes in sugar beet M14.
    Lv X; Jin Y; Wang Y
    Comput Biol Chem; 2018 Aug; 75():1-10. PubMed ID: 29705503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet.
    Hossain MS; Persicke M; ElSayed AI; Kalinowski J; Dietz KJ
    J Exp Bot; 2017 Dec; 68(21-22):5961-5976. PubMed ID: 29140437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similar and divergent responses to salinity stress of jamun (
    Singh A; Kumar A; Prakash J; Verma AK
    PeerJ; 2024; 12():e17311. PubMed ID: 38766484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt sensitivity in chickpea: Growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes.
    Khan HA; Siddique KH; Munir R; Colmer TD
    J Plant Physiol; 2015 Jun; 182():1-12. PubMed ID: 26037693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet.
    Hossain MS; ElSayed AI; Moore M; Dietz KJ
    J Exp Bot; 2017 Feb; 68(5):1283-1298. PubMed ID: 28338762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecophysiological response of Crambe maritima to airborne and soil-borne salinity.
    de Vos AC; Broekman R; Groot MP; Rozema J
    Ann Bot; 2010 Jun; 105(6):925-37. PubMed ID: 20354071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sugar Beet (
    Rasouli F; Kiani-Pouya A; Li L; Zhang H; Chen Z; Hedrich R; Wilson R; Shabala S
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32230932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of N
    Li J; Wang J; Pang Q; Yan X
    Plant Sci; 2023 Oct; 335():111794. PubMed ID: 37459955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14.
    Yang L; Ma C; Wang L; Chen S; Li H
    J Plant Physiol; 2012 Jun; 169(9):839-50. PubMed ID: 22498239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome and Metabolome Analyses Revealed the Response Mechanism of Sugar Beet to Salt Stress of Different Durations.
    Cui J; Li J; Dai C; Li L
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36076993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14.
    Yang L; Zhang Y; Zhu N; Koh J; Ma C; Pan Y; Yu B; Chen S; Li H
    J Proteome Res; 2013 Nov; 12(11):4931-50. PubMed ID: 23799291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.