These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 33837781)
21. Genome-Wide Characterization of the Maize ( Wang Y; Li W; Qu J; Li F; Du W; Weng J Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834371 [TBL] [Abstract][Full Text] [Related]
22. Metamorphosis of the Basidiomycota Ustilago maydis: transformation of yeast-like cells into basidiocarps. Cabrera-Ponce JL; León-Ramírez CG; Verver-Vargas A; Palma-Tirado L; Ruiz-Herrera J Fungal Genet Biol; 2012 Oct; 49(10):765-71. PubMed ID: 22921263 [TBL] [Abstract][Full Text] [Related]
24. The transition from a phytopathogenic smut ancestor to an anamorphic biocontrol agent deciphered by comparative whole-genome analysis. Lefebvre F; Joly DL; Labbé C; Teichmann B; Linning R; Belzile F; Bakkeren G; Bélanger RR Plant Cell; 2013 Jun; 25(6):1946-59. PubMed ID: 23800965 [TBL] [Abstract][Full Text] [Related]
25. Molecular Interactions Between Smut Fungi and Their Host Plants. Zuo W; Ökmen B; Depotter JRL; Ebert MK; Redkar A; Misas Villamil J; Doehlemann G Annu Rev Phytopathol; 2019 Aug; 57():411-430. PubMed ID: 31337276 [TBL] [Abstract][Full Text] [Related]
26. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. Mueller AN; Ziemann S; Treitschke S; Aßmann D; Doehlemann G PLoS Pathog; 2013 Feb; 9(2):e1003177. PubMed ID: 23459172 [TBL] [Abstract][Full Text] [Related]
27. The Ustilago maydis repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize proteins. Ma LS; Wang L; Trippel C; Mendoza-Mendoza A; Ullmann S; Moretti M; Carsten A; Kahnt J; Reissmann S; Zechmann B; Bange G; Kahmann R Nat Commun; 2018 Apr; 9(1):1711. PubMed ID: 29703884 [TBL] [Abstract][Full Text] [Related]
28. A cell surface-exposed protein complex with an essential virulence function in Ustilago maydis. Ludwig N; Reissmann S; Schipper K; Gonzalez C; Assmann D; Glatter T; Moretti M; Ma LS; Rexer KH; Snetselaar K; Kahmann R Nat Microbiol; 2021 Jun; 6(6):722-730. PubMed ID: 33941900 [TBL] [Abstract][Full Text] [Related]
29. Complementation of Ustilago maydis MAPK mutants by a wheat leaf rust, Puccinia triticina homolog: potential for functional analyses of rust genes. Hu G; Kamp A; Linning R; Naik S; Bakkeren G Mol Plant Microbe Interact; 2007 Jun; 20(6):637-47. PubMed ID: 17555272 [TBL] [Abstract][Full Text] [Related]
30. Conserved and Distinct Functions of the “Stunted” (StuA)-Homolog Ust1 During Cell Differentiation in the Corn Smut Fungus Ustilago maydis. Baeza-Montañez L; Gold SE; Espeso EA; García-Pedrajas MD Mol Plant Microbe Interact; 2015 Jan; 28(1):86-102. PubMed ID: 25208341 [TBL] [Abstract][Full Text] [Related]
31. The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis. Tollot M; Assmann D; Becker C; Altmüller J; Dutheil JY; Wegner CE; Kahmann R PLoS Pathog; 2016 Jun; 12(6):e1005697. PubMed ID: 27332891 [TBL] [Abstract][Full Text] [Related]
32. The fungal pathogen Ustilago maydis targets the maize corepressor RELK2 to modulate host transcription for tumorigenesis. Huang L; Ökmen B; Stolze SC; Kastl M; Khan M; Hilbig D; Nakagami H; Djamei A; Doehlemann G New Phytol; 2024 Feb; 241(4):1747-1762. PubMed ID: 38037456 [TBL] [Abstract][Full Text] [Related]
33. Comparative analyses of secreted proteins in plant pathogenic smut fungi and related basidiomycetes. Schuster M; Schweizer G; Kahmann R Fungal Genet Biol; 2018 Mar; 112():21-30. PubMed ID: 28089076 [TBL] [Abstract][Full Text] [Related]
34. Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize. Lee K; Pan JJ; May G FEMS Microbiol Lett; 2009 Oct; 299(1):31-7. PubMed ID: 19694816 [TBL] [Abstract][Full Text] [Related]
35. Phytohormone Involvement in the Ustilago maydis- Zea mays Pathosystem: Relationships between Abscisic Acid and Cytokinin Levels and Strain Virulence in Infected Cob Tissue. Morrison EN; Emery RJ; Saville BJ PLoS One; 2015; 10(6):e0130945. PubMed ID: 26107181 [TBL] [Abstract][Full Text] [Related]
36. Domestication of maize, sorghum, and sugarcane did not drive the divergence of their smut pathogens. Munkacsi AB; Stoxen S; May G Evolution; 2007 Feb; 61(2):388-403. PubMed ID: 17348948 [TBL] [Abstract][Full Text] [Related]
37. Characterization of the largest effector gene cluster of Ustilago maydis. Brefort T; Tanaka S; Neidig N; Doehlemann G; Vincon V; Kahmann R PLoS Pathog; 2014 Jul; 10(7):e1003866. PubMed ID: 24992561 [TBL] [Abstract][Full Text] [Related]
38. Investigating the Ustilago maydis/Zea mays pathosystem: transcriptional responses and novel functional aspects of a fungal calcineurin regulatory B subunit. Donaldson ME; Meng S; Gagarinova A; Babu M; Lambie SC; Swiadek AA; Saville BJ Fungal Genet Biol; 2013; 58-59():91-104. PubMed ID: 23973481 [TBL] [Abstract][Full Text] [Related]
39. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. van der Linde K; Kastner C; Kumlehn J; Kahmann R; Doehlemann G New Phytol; 2011 Jan; 189(2):471-83. PubMed ID: 21039559 [TBL] [Abstract][Full Text] [Related]
40. Defects in mitochondrial and peroxisomal β-oxidation influence virulence in the maize pathogen Ustilago maydis. Kretschmer M; Klose J; Kronstad JW Eukaryot Cell; 2012 Aug; 11(8):1055-66. PubMed ID: 22707484 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]