These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 33837973)
41. Location, location, location: Feeding site affects aphid performance by altering access and quality of nutrients. Nalam VJ; Han J; Pitt WJ; Acharya SR; Nachappa P PLoS One; 2021; 16(2):e0245380. PubMed ID: 33539358 [TBL] [Abstract][Full Text] [Related]
42. Density-dependent interference of aphids with caterpillar-induced defenses in Arabidopsis: involvement of phytohormones and transcription factors. Kroes A; van Loon JJ; Dicke M Plant Cell Physiol; 2015 Jan; 56(1):98-106. PubMed ID: 25339349 [TBL] [Abstract][Full Text] [Related]
43. Molecular sabotage of plant defense by aphid saliva. Will T; Tjallingii WF; Thönnessen A; van Bel AJ Proc Natl Acad Sci U S A; 2007 Jun; 104(25):10536-41. PubMed ID: 17553961 [TBL] [Abstract][Full Text] [Related]
45. Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. Divol F; Vilaine F; Thibivilliers S; Kusiak C; Sauge MH; Dinant S Plant Cell Environ; 2007 Feb; 30(2):187-201. PubMed ID: 17238910 [TBL] [Abstract][Full Text] [Related]
46. Reduced phloem uptake of Myzus persicae on an aphid resistant pepper accession. Sun M; Voorrips RE; Steenhuis-Broers G; Van't Westende W; Vosman B BMC Plant Biol; 2018 Jun; 18(1):138. PubMed ID: 29945550 [TBL] [Abstract][Full Text] [Related]
47. The Arabidopsis thaliana/Myzus persicae model system demonstrates that a single gene can influence the interaction between a plant and a sap-feeding insect. Hunt EJ; Pritchard J; Bennett MJ; Zhu X; Barrett DA; Allen T; Bale J; Newbury HJ Mol Ecol; 2006 Nov; 15(13):4203-13. PubMed ID: 17054513 [TBL] [Abstract][Full Text] [Related]
48. Elevated CO2 increases the abundance of the peach aphid on Arabidopsis by reducing jasmonic acid defenses. Sun Y; Guo H; Zhu-Salzman K; Ge F Plant Sci; 2013 Sep; 210():128-40. PubMed ID: 23849120 [TBL] [Abstract][Full Text] [Related]
49. Redox responses of Arabidopsis thaliana to the green peach aphid, Myzus persicae. Xu J; Padilla CS; Li J; Wickramanayake J; Fischer HD; Goggin FL Mol Plant Pathol; 2021 Jun; 22(6):727-736. PubMed ID: 33829627 [TBL] [Abstract][Full Text] [Related]
50. New insights into diet breadth of polyphagous and oligophagous aphids on two Arabidopsis ecotypes. Wattier C; Turbant A; Sargos-Vallade L; Pelloux J; Rustérucci C; Cherqui A Insect Sci; 2019 Aug; 26(4):753-769. PubMed ID: 29271105 [TBL] [Abstract][Full Text] [Related]
51. Barley transcriptome analyses upon interaction with different aphid species identify thionins contributing to resistance. Escudero-Martinez CM; Morris JA; Hedley PE; Bos JIB Plant Cell Environ; 2017 Nov; 40(11):2628-2643. PubMed ID: 28452058 [TBL] [Abstract][Full Text] [Related]
52. Arabidopsis thaliana-Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids. Louis J; Shah J Front Plant Sci; 2013; 4():213. PubMed ID: 23847627 [TBL] [Abstract][Full Text] [Related]
53. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Moran PJ; Thompson GA Plant Physiol; 2001 Feb; 125(2):1074-85. PubMed ID: 11161062 [TBL] [Abstract][Full Text] [Related]
54. Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. De Vos M; Jander G Plant Cell Environ; 2009 Nov; 32(11):1548-60. PubMed ID: 19558622 [TBL] [Abstract][Full Text] [Related]
55. Aphid infestation leads to plant part-specific changes in phloem sap chemistry, which may indicate niche construction. Jakobs R; Schweiger R; Müller C New Phytol; 2019 Jan; 221(1):503-514. PubMed ID: 30040116 [TBL] [Abstract][Full Text] [Related]
56. The role of protein effectors in plant-aphid interactions. Elzinga DA; Jander G Curr Opin Plant Biol; 2013 Aug; 16(4):451-6. PubMed ID: 23850072 [TBL] [Abstract][Full Text] [Related]
57. Pectin Methylesterases Modulate Plant Homogalacturonan Status in Defenses against the Aphid Silva-Sanzana C; Celiz-Balboa J; Garzo E; Marcus SE; Parra-Rojas JP; Rojas B; Olmedo P; Rubilar MA; Rios I; Chorbadjian RA; Fereres A; Knox P; Saez-Aguayo S; Blanco-Herrera F Plant Cell; 2019 Aug; 31(8):1913-1929. PubMed ID: 31126981 [TBL] [Abstract][Full Text] [Related]
58. Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, Lepidopteran insects, bacterial and viral pathogens. Jin S; Zhang X; Daniell H Plant Biotechnol J; 2012 Apr; 10(3):313-27. PubMed ID: 22077160 [TBL] [Abstract][Full Text] [Related]
59. Comparative analysis of Solanum stoloniferum responses to probing by the green peach aphid Myzus persicae and the potato aphid Macrosiphum euphorbiae. Alvarez AE; Broglia VG; Alberti D'Amato AM; Wouters D; van der Vossen E; Garzo E; Tjallingii WF; Dicke M; Vosman B Insect Sci; 2013 Apr; 20(2):207-27. PubMed ID: 23955861 [TBL] [Abstract][Full Text] [Related]
60. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance. Jaouannet M; Morris JA; Hedley PE; Bos JI PLoS Pathog; 2015 May; 11(5):e1004918. PubMed ID: 25993686 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]