These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 33838388)
1. Biomass fuel production from cellulosic sludge through biodrying: Aeration strategies, quality of end-products, gaseous emissions and techno-economic assessment. Guerra-Gorostegi N; González D; Puyuelo B; Ovejero J; Colón J; Gabriel D; Sánchez A; Ponsá S Waste Manag; 2021 May; 126():487-496. PubMed ID: 33838388 [TBL] [Abstract][Full Text] [Related]
2. Filling in sewage sludge biodrying gaps: Greenhouse gases, volatile organic compounds and odour emissions. González D; Guerra N; Colón J; Gabriel D; Ponsá S; Sánchez A Bioresour Technol; 2019 Nov; 291():121857. PubMed ID: 31377511 [TBL] [Abstract][Full Text] [Related]
3. Reduction in greenhouse gas emissions from sludge biodrying instead of heat drying combined with mono-incineration in China. Liu HT; Wang YW; Liu XJ; Gao D; Zheng GD; Lei M; Guo GH; Zheng HX; Kong XJ J Air Waste Manag Assoc; 2017 Feb; 67(2):212-218. PubMed ID: 27629354 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous effect of initial moisture content and airflow rate on biodrying of sewage sludge. Huiliñir C; Villegas M Water Res; 2015 Oct; 82():118-28. PubMed ID: 26054696 [TBL] [Abstract][Full Text] [Related]
5. Energetic enhancement of thermal assistance in the cooling stage of biodrying by stimulating microbial degradation. Ma J; Zhang L; Mu L; Zhu K; Li A Waste Manag; 2019 Apr; 89():165-176. PubMed ID: 31079729 [TBL] [Abstract][Full Text] [Related]
6. The synergistic regulation of sewage sludge biodrying and greenhouse gas reduction by additives. Zhang Z; Jin B; Zhang Y; Huang Z; Li C; Tan M; Huang J; Lei T; Qi Y; Li H Bioresour Technol; 2024 Feb; 394():130180. PubMed ID: 38086457 [TBL] [Abstract][Full Text] [Related]
7. Key variables analysis of a novel continuous biodrying process for drying mixed sludge. Navaee-Ardeh S; Bertrand F; Stuart PR Bioresour Technol; 2010 May; 101(10):3379-87. PubMed ID: 20074935 [TBL] [Abstract][Full Text] [Related]
8. Biodrying of pulp and paper secondary sludge: kinetics of volatile solids biodegradation. Huiliñir C; Villegas M Bioresour Technol; 2014 Apr; 157():206-13. PubMed ID: 24561626 [TBL] [Abstract][Full Text] [Related]
9. [Influence of Air Flux on Municipal Sludge Biodrying in a Pilot Scale Test]. Zhang Y; Han R; Lu WJ; Wang HT; Ming ZY; Wang Q; Xia W Huan Jing Ke Xue; 2015 May; 36(5):1727-32. PubMed ID: 26314123 [TBL] [Abstract][Full Text] [Related]
10. Energy-efficient co-biodrying of dewatered sludge and food waste: Synergistic enhancement and variables investigation. Ma J; Zhang L; Li A Waste Manag; 2016 Oct; 56():411-22. PubMed ID: 27324927 [TBL] [Abstract][Full Text] [Related]
11. The biodrying concept: an innovative technology creating energy from sewage sludge. Winkler MH; Bennenbroek MH; Horstink FH; van Loosdrecht MCM; van de Pol GJ Bioresour Technol; 2013 Nov; 147():124-129. PubMed ID: 23994310 [TBL] [Abstract][Full Text] [Related]
12. Biodrying of sewage sludge: kinetics of volatile solids degradation under different initial moisture contents and air-flow rates. Villegas M; Huiliñir C Bioresour Technol; 2014 Dec; 174():33-41. PubMed ID: 25463779 [TBL] [Abstract][Full Text] [Related]
13. Environmental impacts of cement kiln co-incineration sewage sludge biodried products in a scale-up trial. Yu B; Fu L; Chen T; Zheng G; Yang J; Cheng Y; Liu Y; Huang X Waste Manag; 2024 Apr; 177():24-33. PubMed ID: 38290345 [TBL] [Abstract][Full Text] [Related]
14. Effects of aeration on matrix temperature by infrared thermal imager and computational fluid dynamics during sludge bio-drying. Yu D; Yang M; Qi L; Liu M; Wang Y; Wei Y Water Res; 2017 Oct; 122():317-328. PubMed ID: 28614744 [TBL] [Abstract][Full Text] [Related]
15. Co-biodrying of sewage sludge and organic fraction of municipal solid waste: A thermogravimetric assessment of the blends. Zhang D; Luo W; Liu Y; Yuan J; Li G Waste Manag; 2019 Jul; 95():652-660. PubMed ID: 31351653 [TBL] [Abstract][Full Text] [Related]
16. Structure modification and extracellular polymeric substances conversion during sewage sludge biodrying process. Cai L; Krafft T; Chen TB; Gao D; Wang L Bioresour Technol; 2016 Sep; 216():414-21. PubMed ID: 27262096 [TBL] [Abstract][Full Text] [Related]
17. Biodrying process: A sustainable technology for treatment of municipal solid waste with high moisture content. Tom AP; Pawels R; Haridas A Waste Manag; 2016 Mar; 49():64-72. PubMed ID: 26774396 [TBL] [Abstract][Full Text] [Related]
18. Co-biodrying of sewage sludge and organic fraction of municipal solid waste: Role of mixing proportions. Zhang D; Luo W; Yuan J; Li G Waste Manag; 2018 Jul; 77():333-340. PubMed ID: 29705044 [TBL] [Abstract][Full Text] [Related]
19. [Effect of Aeration Strategies on Emissions of Nitrogenous Gases and Methane During Sludge Bio-Drying]. Qi L; Wei YS; Zhang JY; Zhao CY; Cai X; Zhang YL; Shao CY; Li HM Huan Jing Ke Xue; 2016 Jan; 37(1):366-76. PubMed ID: 27078979 [TBL] [Abstract][Full Text] [Related]
20. Spent coffee ground as a new bulking agent for accelerated biodrying of dewatered sludge. Hao Z; Yang B; Jahng D Water Res; 2018 Jul; 138():250-263. PubMed ID: 29605704 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]