These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33838409)

  • 1. Two transformation pathways of Acetaminophen with Fe
    Tong Y; Wang X; Sun Z; Gao J
    Chemosphere; 2021 Sep; 278():130399. PubMed ID: 33838409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative coupling of acetaminophen mediated by Fe
    Peng A; Huang M; Chen Z; Gu C
    Sci Total Environ; 2017 Oct; 595():673-680. PubMed ID: 28407584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutual Interactions between Reduced Fe-Bearing Clay Minerals and Humic Acids under Dark, Oxygenated Conditions: Hydroxyl Radical Generation and Humic Acid Transformation.
    Zeng Q; Wang X; Liu X; Huang L; Hu J; Chu R; Tolic N; Dong H
    Environ Sci Technol; 2020 Dec; 54(23):15013-15023. PubMed ID: 32991154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydration/expansion and cation charge compensation modulate the Brønsted basicity of distorted clay water.
    Cervini-Silva J; Larson RA; Stucki JW
    Langmuir; 2006 Mar; 22(7):2961-5. PubMed ID: 16548541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron(III)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32.
    Luan F; Liu Y; Griffin AM; Gorski CA; Burgos WD
    Environ Sci Technol; 2015 Feb; 49(3):1418-26. PubMed ID: 25565314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Humidity induces the formation of radicals and enhances photodegradation of chlorinated-PAHs on Fe(III)-montmorillonite.
    Zhao X; Cheng P; Borch T; Waigi MG; Peng F; Gao Y
    J Hazard Mater; 2022 Feb; 423(Pt B):127210. PubMed ID: 34555768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of coexisting mineral on crystallinity and stability of Fe(II) oxidation products: Implications for neutralization treatment of acid mine drainage.
    Fan Q; Wang L; Fu Y; Wang Z
    J Hazard Mater; 2023 Jan; 442():130060. PubMed ID: 36182886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of ferrous iron with clay mineral surfaces during sorption and subsequent oxidation.
    Van Groeningen N; ThomasArrigo LK; Byrne JM; Kappler A; Christl I; Kretzschmar R
    Environ Sci Process Impacts; 2020 Jun; 22(6):1355-1367. PubMed ID: 32374339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and oxidative transformation of phenolic acids By Fe(III)-montmorillonite.
    Polubesova T; Eldad S; Chefetz B
    Environ Sci Technol; 2010 Jun; 44(11):4203-9. PubMed ID: 20455586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Insight into Humic Acid-Enhanced Hydroxyl Radical Production from Fe(II)-Bearing Clay Mineral Oxygenation.
    Yu C; Zhang Y; Lu Y; Qian A; Zhang P; Cui Y; Yuan S
    Environ Sci Technol; 2021 Oct; 55(19):13366-13375. PubMed ID: 34551244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photochemical formation of hydroxyl radicals catalyzed by montmorillonite.
    Wu F; Li J; Peng Z; Deng N
    Chemosphere; 2008 Jun; 72(3):407-13. PubMed ID: 18384836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at clay mineral edge and basal sites.
    Neumann A; Olson TL; Scherer MM
    Environ Sci Technol; 2013 Jul; 47(13):6969-77. PubMed ID: 23517074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism insight into the role of clay particles on enhancing phosphate removal by ferrate compared with ferric salt.
    Li W; Ouyang F; An G; Yang C; Zhong R; Xiao F; Peng D; Wang D
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):45414-45421. PubMed ID: 33866501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The formation of •OH with Fe-bearing smectite clays and low-molecular-weight thiols: Implication of As(III) removal.
    Sun Z; Huang M; Liu C; Fang G; Chen N; Zhou D; Gao J
    Water Res; 2020 May; 174():115631. PubMed ID: 32114017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox transformation of structural iron in nontronite induced by quinones under anoxic conditions.
    Zhang N; Tong M; Yuan S
    Sci Total Environ; 2021 Dec; 801():149637. PubMed ID: 34416610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolution of Fe from Fe-bearing minerals during the brown-carbonization processes in atmosphere.
    Wang Y; Ling J; Gu C; Zhou S; Jin X
    Sci Total Environ; 2021 Oct; 791():148133. PubMed ID: 34119791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Culture-dependent and culture-independent methods reveal microbe-clay mineral interactions by dissimilatory iron-reducing bacteria in an integral oilfield.
    Dong H; Zhang F; Xu T; Liu Y; Du Y; Wang C; Liu T; Gao J; He Y; Wang X; Sun S; She Y
    Sci Total Environ; 2022 Sep; 840():156577. PubMed ID: 35688243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid surface photochemistry of montmorillonite: mechanisms for the arsenite oxidation under UV-A irradiation.
    Yuan Y; Wang Y; Ding W; Li J; Wu F
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1035-43. PubMed ID: 26194238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photodegradation of atrazine in the presence of indole-3-acetic acid and natural montmorillonite clay minerals.
    Zhang L; Tian H; Hong R; Wang C; Wang Y; Peng A; Gu C
    Environ Pollut; 2018 Sep; 240():793-801. PubMed ID: 29778815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural montmorillonite induced photooxidation of As(III) in aqueous suspensions: roles and sources of hydroxyl and hydroperoxyl/superoxide radicals.
    Wang Y; Xu J; Li J; Wu F
    J Hazard Mater; 2013 Sep; 260():255-62. PubMed ID: 23770489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.