These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33838653)

  • 1. Deciphering hierarchical organization of topologically associated domains through change-point testing.
    Xing H; Wu Y; Zhang MQ; Chen Y
    BMC Bioinformatics; 2021 Apr; 22(1):183. PubMed ID: 33838653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for the preservation of a subset of topologically associating domains in interphase chromosomes upon cohesin depletion.
    Jeong D; Shi G; Li X; Thirumalai D
    Elife; 2024 Mar; 12():. PubMed ID: 38502563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying topologically associating domains using differential kernels.
    Maisuradze L; King MC; Surovtsev IV; Mochrie SGJ; Shattuck MD; O'Hern CS
    PLoS Comput Biol; 2024 Jul; 20(7):e1012221. PubMed ID: 39008525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying TAD-like domains on single-cell Hi-C data by graph embedding and changepoint detection.
    Liu E; Lyu H; Liu Y; Fu L; Cheng X; Yin X
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38449288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microrheology for Hi-C Data Reveals the Spectrum of the Dynamic 3D Genome Organization.
    Shinkai S; Sugawara T; Miura H; Hiratani I; Onami S
    Biophys J; 2020 May; 118(9):2220-2228. PubMed ID: 32191860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SuperTAD: robust detection of hierarchical topologically associated domains with optimized structural information.
    Zhang YW; Wang MB; Li SC
    Genome Biol; 2021 Jan; 22(1):45. PubMed ID: 33494803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of computational methods for the identification of topologically associating domains.
    Zufferey M; Tavernari D; Oricchio E; Ciriello G
    Genome Biol; 2018 Dec; 19(1):217. PubMed ID: 30526631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stratifying TAD boundaries pinpoints focal genomic regions of regulation, damage, and repair.
    Chen B; Ren C; Ouyang Z; Xu J; Xu K; Li Y; Guo H; Bai X; Tian M; Xu X; Wang Y; Li H; Bo X; Chen H
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38935071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NETWORK MODELLING OF TOPOLOGICAL DOMAINS USING HI-C DATA.
    Wang YXR; Sarkar P; Ursu O; Kundaje A; Bickel PJ
    Ann Appl Stat; 2019 Sep; 13(3):1511-1536. PubMed ID: 32968472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DiffDomain enables identification of structurally reorganized topologically associating domains.
    Hua D; Gu M; Zhang X; Du Y; Xie H; Qi L; Du X; Bai Z; Zhu X; Tian D
    Nat Commun; 2024 Jan; 15(1):502. PubMed ID: 38218905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [An identification method of chromatin topological associated domains based on spatial density clustering].
    Gong H; Zhang S; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Jun; 41(3):552-559. PubMed ID: 38932542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OnTAD: hierarchical domain structure reveals the divergence of activity among TADs and boundaries.
    An L; Yang T; Yang J; Nuebler J; Xiang G; Hardison RC; Li Q; Zhang Y
    Genome Biol; 2019 Dec; 20(1):282. PubMed ID: 31847870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin loop anchors contain core structural components of the gene expression machinery in maize.
    Deschamps S; Crow JA; Chaidir N; Peterson-Burch B; Kumar S; Lin H; Zastrow-Hayes G; May GD
    BMC Genomics; 2021 Jan; 22(1):23. PubMed ID: 33407087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SuperTAD-Fast: Accelerating Topologically Associating Domains Detection Through Discretization.
    Ling Z; Zhang YW; Li SC
    J Comput Biol; 2024 Sep; 31(9):784-796. PubMed ID: 39047029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of computational methods for Hi-C data analysis.
    Forcato M; Nicoletti C; Pal K; Livi CM; Ferrari F; Bicciato S
    Nat Methods; 2017 Jul; 14(7):679-685. PubMed ID: 28604721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PredTAD: A machine learning framework that models 3D chromatin organization alterations leading to oncogene dysregulation in breast cancer cell lines.
    Chyr J; Zhang Z; Chen X; Zhou X
    Comput Struct Biotechnol J; 2021; 19():2870-2880. PubMed ID: 34093998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive benchmarking with interpretation and operational guidance for the hierarchy of topologically associating domains.
    Xu J; Xu X; Huang D; Luo Y; Lin L; Bai X; Zheng Y; Yang Q; Cheng Y; Huang A; Shi J; Bo X; Gu J; Chen H
    Nat Commun; 2024 May; 15(1):4376. PubMed ID: 38782890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence-based multiscale modeling for high-throughput chromosome conformation capture (Hi-C) data analysis.
    Xia K
    PLoS One; 2018; 13(2):e0191899. PubMed ID: 29408904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential contribution of steady-state RNA and active transcription in chromatin organization.
    Barutcu AR; Blencowe BJ; Rinn JL
    EMBO Rep; 2019 Oct; 20(10):e48068. PubMed ID: 31448565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C2c: Predicting Micro-C from Hi-C.
    Zhu H; Liu T; Wang Z
    Genes (Basel); 2024 May; 15(6):. PubMed ID: 38927609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.