These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 33838805)
1. Preparation and stability mechanisms of double emulsions stabilized by gelatinized native starch. Yang J; Gu Z; Cheng L; Li Z; Li C; Ban X; Hong Y Carbohydr Polym; 2021 Jun; 262():117926. PubMed ID: 33838805 [TBL] [Abstract][Full Text] [Related]
2. Particle-stabilizers modified from indica rice starches differing in amylose content. Song X; Pei Y; Zhu W; Fu D; Ren H Food Chem; 2014 Jun; 153():74-80. PubMed ID: 24491702 [TBL] [Abstract][Full Text] [Related]
3. Physical stability, microstructure and micro-rheological properties of water-in-oil-in-water (W/O/W) emulsions stabilized by porcine gelatin. Zhu Q; Qiu S; Zhang H; Cheng Y; Yin L Food Chem; 2018 Jul; 253():63-70. PubMed ID: 29502845 [TBL] [Abstract][Full Text] [Related]
4. Sago starch nanocrystal-stabilized Pickering emulsions: Stability and rheological behavior. Azfaralariff A; Farahfaiqah F; Joe LS; Fazry S; Mohamed M; Nazar MF; Lazim AM Int J Biol Macromol; 2021 Jul; 182():197-206. PubMed ID: 33774073 [TBL] [Abstract][Full Text] [Related]
5. Formulation and Characterization of Soybean Oil-in-Water Emulsions Stabilized Using Gelatinized Starch Dispersions from Plant Sources. Singh A; Umeda T; Kobayashi I Molecules; 2024 Apr; 29(9):. PubMed ID: 38731414 [TBL] [Abstract][Full Text] [Related]
6. Comparison of bioaccessibility of astaxanthin encapsulated in starch-based double emulsion with different structures. Yang J; Hua S; Huang Z; Gu Z; Cheng L; Hong Y Carbohydr Polym; 2021 Nov; 272():118475. PubMed ID: 34420734 [TBL] [Abstract][Full Text] [Related]
7. The combination of starch nanoparticles and Tween 80 results in enhanced emulsion stability. Bu X; Wang X; Dai L; Ji N; Xiong L; Sun Q Int J Biol Macromol; 2020 Nov; 163():2048-2059. PubMed ID: 32961176 [TBL] [Abstract][Full Text] [Related]
8. Formation and Stability of Core-Shell Nanofibers by Electrospinning of Gel-Like Corn Oil-in-Water Emulsions Stabilized by Gelatin. Zhang C; Zhang H J Agric Food Chem; 2018 Nov; 66(44):11681-11690. PubMed ID: 30296080 [TBL] [Abstract][Full Text] [Related]
9. Encapsulation of indole-3-carbinol in Pickering emulsions stabilized by OSA-modified high amylose corn starch: Preparation, characterization and storage stability properties. Zheng W; Ren L; Hao W; Wang L; Liu C; Zheng L Food Chem; 2022 Aug; 386():132846. PubMed ID: 35381538 [TBL] [Abstract][Full Text] [Related]
10. Anthocyanin-loaded double Pickering emulsion stabilized by octenylsuccinate quinoa starch: Preparation, stability and in vitro gastrointestinal digestion. Lin X; Li S; Yin J; Chang F; Wang C; He X; Huang Q; Zhang B Int J Biol Macromol; 2020 Jun; 152():1233-1241. PubMed ID: 31765743 [TBL] [Abstract][Full Text] [Related]
12. The role of alginate in starch nanocrystals-stabilized Pickering emulsions: From physical stability and microstructure to rheology behavior. Cai J; Zhang D; Xie F Food Chem; 2024 Jan; 431():137017. PubMed ID: 37562336 [TBL] [Abstract][Full Text] [Related]
13. Effect of the degree of substitution of octenyl succinic anhydride-banana starch on emulsion stability. Bello-Pérez LA; Bello-Flores CA; Nuñez-Santiago Mdel C; Coronel-Aguilera CP; Alvarez-Ramirez J Carbohydr Polym; 2015 Nov; 132():17-24. PubMed ID: 26256319 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of water-in-oil-in-water emulsions containing a high concentration of L-ascorbic acid. Khalid N; Kobayashi I; Neves MA; Uemura K; Nakajima M Biosci Biotechnol Biochem; 2013; 77(6):1171-8. PubMed ID: 23748753 [TBL] [Abstract][Full Text] [Related]
15. Influence of environmental stresses on stability of O/W emulsions containing cationic droplets stabilized by SDS-fish gelatin membranes. Surh J; Gu YS; Decker EA; McClements DJ J Agric Food Chem; 2005 May; 53(10):4236-44. PubMed ID: 15884866 [TBL] [Abstract][Full Text] [Related]
16. Effects of droplet size on the oxidative stability of oil-in-water emulsions. Nakaya K; Ushio H; Matsukawa S; Shimizu M; Ohshima T Lipids; 2005 May; 40(5):501-7. PubMed ID: 16094860 [TBL] [Abstract][Full Text] [Related]
17. Elucidation of stabilizing oil-in-water Pickering emulsion with different modified maize starch-based nanoparticles. Ye F; Miao M; Jiang B; Campanella OH; Jin Z; Zhang T Food Chem; 2017 Aug; 229():152-158. PubMed ID: 28372158 [TBL] [Abstract][Full Text] [Related]
18. Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size. Ge S; Xiong L; Li M; Liu J; Yang J; Chang R; Liang C; Sun Q Food Chem; 2017 Nov; 234():339-347. PubMed ID: 28551245 [TBL] [Abstract][Full Text] [Related]
19. Characterization and stability of short-chain fatty acids modified starch Pickering emulsions. Abdul Hadi N; Marefati A; Matos M; Wiege B; Rayner M Carbohydr Polym; 2020 Jul; 240():116264. PubMed ID: 32475554 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterization of water/oil and water/oil/water emulsions containing biopolymer-gelled water droplets. Surh J; Vladisavljevi Cacute GT; Mun S; McClements DJ J Agric Food Chem; 2007 Jan; 55(1):175-84. PubMed ID: 17199330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]