These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 33839024)

  • 1. Sirtuins: To Be or Not To Be in Diabetic Cardiomyopathy.
    Palomer X; Aguilar-Recarte D; García R; Nistal JF; Vázquez-Carrera M
    Trends Mol Med; 2021 Jun; 27(6):554-571. PubMed ID: 33839024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SIRT6: A potential therapeutic target for diabetic cardiomyopathy.
    Wu T; Qu Y; Xu S; Wang Y; Liu X; Ma D
    FASEB J; 2023 Aug; 37(8):e23099. PubMed ID: 37462453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIRT6‑specific inhibitor OSS‑128167 exacerbates diabetic cardiomyopathy by aggravating inflammation and oxidative stress.
    Huang Y; Zhang J; Xu D; Peng Y; Jin Y; Zhang L
    Mol Med Rep; 2021 May; 23(5):. PubMed ID: 33760202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy.
    Palomer X; Salvadó L; Barroso E; Vázquez-Carrera M
    Int J Cardiol; 2013 Oct; 168(4):3160-72. PubMed ID: 23932046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy.
    Frati G; Schirone L; Chimenti I; Yee D; Biondi-Zoccai G; Volpe M; Sciarretta S
    Cardiovasc Res; 2017 Mar; 113(4):378-388. PubMed ID: 28395009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of SIRT1 in diabetic cardiomyopathy.
    Karbasforooshan H; Karimi G
    Biomed Pharmacother; 2017 Jun; 90():386-392. PubMed ID: 28380414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of cardiac pathology in diabetes - Experimental insights.
    Varma U; Koutsifeli P; Benson VL; Mellor KM; Delbridge LMD
    Biochim Biophys Acta Mol Basis Dis; 2018 May; 1864(5 Pt B):1949-1959. PubMed ID: 29109032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone Deacetylases in the Pathogenesis of Diabetic Cardiomyopathy.
    Ke X; Lin Z; Ye Z; Leng M; Chen B; Jiang C; Jiang X; Li G
    Front Endocrinol (Lausanne); 2021; 12():679655. PubMed ID: 34367065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CircRNAs in diabetic cardiomyopathy.
    Wan H; Zhao S; Zeng Q; Tan Y; Zhang C; Liu L; Qu S
    Clin Chim Acta; 2021 Jun; 517():127-132. PubMed ID: 33711326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging Actors in Diabetic Cardiomyopathy: Heartbreaker Biomarkers or Therapeutic Targets?
    Palomer X; Pizarro-Delgado J; Vázquez-Carrera M
    Trends Pharmacol Sci; 2018 May; 39(5):452-467. PubMed ID: 29605388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive review of the novel therapeutic targets for the treatment of diabetic cardiomyopathy.
    Dhar A; Venkadakrishnan J; Roy U; Vedam S; Lalwani N; Ramos KS; Pandita TK; Bhat A
    Ther Adv Cardiovasc Dis; 2023; 17():17539447231210170. PubMed ID: 38069578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose-induced cell signaling in the pathogenesis of diabetic cardiomyopathy.
    Mortuza R; Chakrabarti S
    Heart Fail Rev; 2014 Jan; 19(1):75-86. PubMed ID: 23430126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Aza resveratrol-chalcone derivative 6b protects mice against diabetic cardiomyopathy by alleviating inflammation and oxidative stress.
    You S; Qian J; Sun C; Zhang H; Ye S; Chen T; Xu Z; Wang J; Huang W; Liang G
    J Cell Mol Med; 2018 Mar; 22(3):1931-1943. PubMed ID: 29327811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of exercise on improving myocardial mitochondrial function in decreasing diabetic cardiomyopathy.
    Zhang F; Lin JJ; Tian HN; Wang J
    Exp Physiol; 2024 Feb; 109(2):190-201. PubMed ID: 37845840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats.
    Yu W; Wu J; Cai F; Xiang J; Zha W; Fan D; Guo S; Ming Z; Liu C
    PLoS One; 2012; 7(12):e52013. PubMed ID: 23251674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise Amaliorates Metabolic Disturbances and Oxidative Stress in Diabetic Cardiomyopathy: Possible Underlying Mechanisms.
    Mahmoud AM
    Adv Exp Med Biol; 2017; 999():207-230. PubMed ID: 29022265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of AMP-activated protein kinase on cardio-metabolic abnormalities in the development of diabetic cardiomyopathy: A molecular landscape.
    Haye A; Ansari MA; Rahman SO; Shamsi Y; Ahmed D; Sharma M
    Eur J Pharmacol; 2020 Dec; 888():173376. PubMed ID: 32810493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial Mechanisms in Diabetic Cardiomyopathy.
    Gollmer J; Zirlik A; Bugger H
    Diabetes Metab J; 2020 Feb; 44(1):33-53. PubMed ID: 32097997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles and Mechanisms of Herbal Medicine for Diabetic Cardiomyopathy: Current Status and Perspective.
    Tian J; Zhao Y; Liu Y; Liu Y; Chen K; Lyu S
    Oxid Med Cell Longev; 2017; 2017():8214541. PubMed ID: 29204251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insulin resistance, oxidative stress and cardiovascular complications: role of sirtuins.
    Bagul PK; Banerjee SK
    Curr Pharm Des; 2013; 19(32):5663-77. PubMed ID: 23448490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.