BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

630 related articles for article (PubMed ID: 33839230)

  • 1. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability.
    Schoenmaker L; Witzigmann D; Kulkarni JA; Verbeke R; Kersten G; Jiskoot W; Crommelin DJA
    Int J Pharm; 2021 May; 601():120586. PubMed ID: 33839230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemistry of Lipid Nanoparticles for RNA Delivery.
    Eygeris Y; Gupta M; Kim J; Sahay G
    Acc Chem Res; 2022 Jan; 55(1):2-12. PubMed ID: 34850635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations into mRNA Lipid Nanoparticles Shelf-Life Stability under Nonfrozen Conditions.
    Reinhart AG; Osterwald A; Ringler P; Leiser Y; Lauer ME; Martin RE; Ullmer C; Schumacher F; Korn C; Keller M
    Mol Pharm; 2023 Dec; 20(12):6492-6503. PubMed ID: 37975733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Successful batch and continuous lyophilization of mRNA LNP formulations depend on cryoprotectants and ionizable lipids.
    Lamoot A; Lammens J; De Lombaerde E; Zhong Z; Gontsarik M; Chen Y; De Beer TRM; De Geest BG
    Biomater Sci; 2023 Jun; 11(12):4327-4334. PubMed ID: 37073472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CHARMM-GUI Membrane Builder for Lipid Nanoparticles with Ionizable Cationic Lipids and PEGylated Lipids.
    Park S; Choi YK; Kim S; Lee J; Im W
    J Chem Inf Model; 2021 Oct; 61(10):5192-5202. PubMed ID: 34546048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous freeze-drying of messenger RNA lipid nanoparticles enables storage at higher temperatures.
    Meulewaeter S; Nuytten G; Cheng MHY; De Smedt SC; Cullis PR; De Beer T; Lentacker I; Verbeke R
    J Control Release; 2023 May; 357():149-160. PubMed ID: 36958400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme-Catalyzed One-Step Synthesis of Ionizable Cationic Lipids for Lipid Nanoparticle-Based mRNA COVID-19 Vaccines.
    Li Z; Zhang XQ; Ho W; Li F; Gao M; Bai X; Xu X
    ACS Nano; 2022 Nov; 16(11):18936-18950. PubMed ID: 36269150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases.
    Pilkington EH; Suys EJA; Trevaskis NL; Wheatley AK; Zukancic D; Algarni A; Al-Wassiti H; Davis TP; Pouton CW; Kent SJ; Truong NP
    Acta Biomater; 2021 Sep; 131():16-40. PubMed ID: 34153512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of storage conditions for lipid nanoparticle-formulated self-replicating RNA vaccines.
    Kim B; Hosn RR; Remba T; Yun D; Li N; Abraham W; Melo MB; Cortes M; Li B; Zhang Y; Dong Y; Irvine DJ
    J Control Release; 2023 Jan; 353():241-253. PubMed ID: 36414195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Storage and In-Use Stability of mRNA Vaccines and Therapeutics: Not A Cold Case.
    Oude Blenke E; Örnskov E; Schöneich C; Nilsson GA; Volkin DB; Mastrobattista E; Almarsson Ö; Crommelin DJA
    J Pharm Sci; 2023 Feb; 112(2):386-403. PubMed ID: 36351479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery.
    Sun D; Lu ZR
    Pharm Res; 2023 Jan; 40(1):27-46. PubMed ID: 36600047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iterative Design of Ionizable Lipids for Intramuscular mRNA Delivery.
    Tilstra G; Couture-Senécal J; Lau YMA; Manning AM; Wong DSM; Janaeska WW; Wuraola TA; Pang J; Khan OF
    J Am Chem Soc; 2023 Feb; 145(4):2294-2304. PubMed ID: 36652629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic production of mRNA-loaded lipid nanoparticles for vaccine applications.
    Lopes C; Cristóvão J; Silvério V; Lino PR; Fonte P
    Expert Opin Drug Deliv; 2022 Oct; 19(10):1381-1395. PubMed ID: 36223174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid nanoparticle formulations for optimal RNA-based topical delivery to murine airways.
    Tam A; Kulkarni J; An K; Li L; Dorscheid DR; Singhera GK; Bernatchez P; Reid G; Chan K; Witzigmann D; Cullis PR; Sin DD; Lim CJ
    Eur J Pharm Sci; 2022 Sep; 176():106234. PubMed ID: 35688311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid nanoparticle-based mRNA candidates elicit potent T cell responses.
    Zeng Y; Escalona-Rayo O; Knol R; Kros A; Slütter B
    Biomater Sci; 2023 Jan; 11(3):964-974. PubMed ID: 36537916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of lipid components in lipid nanoparticles for vaccines and gene therapy.
    Hald Albertsen C; Kulkarni JA; Witzigmann D; Lind M; Petersson K; Simonsen JB
    Adv Drug Deliv Rev; 2022 Sep; 188():114416. PubMed ID: 35787388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the Structure of Comirnaty Covid-19 Vaccine: A Theory on Soft, Partially Bilayer-Covered Nanoparticles with Hydrogen Bond-Stabilized mRNA-Lipid Complexes.
    Szebeni J; Kiss B; Bozó T; Turjeman K; Levi-Kalisman Y; Barenholz Y; Kellermayer M
    ACS Nano; 2023 Jul; 17(14):13147-13157. PubMed ID: 37417667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a high-throughput platform for screening lipid nanoparticles for mRNA delivery.
    Cui L; Pereira S; Sonzini S; van Pelt S; Romanelli SM; Liang L; Ulkoski D; Krishnamurthy VR; Brannigan E; Brankin C; Desai AS
    Nanoscale; 2022 Jan; 14(4):1480-1491. PubMed ID: 35024714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of lipid composition on RNA-Lipid nanoparticle properties and their sensitivity to thin-film freezing and drying.
    AboulFotouh K; Southard B; Dao HM; Xu H; Moon C; Williams Iii RO; Cui Z
    Int J Pharm; 2024 Jan; 650():123688. PubMed ID: 38070660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of SARS-CoV-2 hFc-Conjugated Receptor-Binding Domain mRNA Vaccine Delivered
    Elia U; Ramishetti S; Rosenfeld R; Dammes N; Bar-Haim E; Naidu GS; Makdasi E; Yahalom-Ronen Y; Tamir H; Paran N; Cohen O; Peer D
    ACS Nano; 2021 Jun; 15(6):9627-9637. PubMed ID: 33480671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.