These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33839375)

  • 1. Deep ANC: A deep learning approach to active noise control.
    Zhang H; Wang D
    Neural Netw; 2021 Sep; 141():1-10. PubMed ID: 33839375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep MCANC: A deep learning approach to multi-channel active noise control.
    Zhang H; Wang D
    Neural Netw; 2023 Jan; 158():318-327. PubMed ID: 36493534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nonlinear active noise control algorithm for virtual microphones controlling chaotic noise.
    Das DP; Moreau DJ; Cazzolato BS
    J Acoust Soc Am; 2012 Aug; 132(2):779-88. PubMed ID: 22894200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Latency Active Noise Control Using Attentive Recurrent Network.
    Zhang H; Pandey A; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2023; 31():1114-1123. PubMed ID: 37746522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What is behind the meta-learning initialization of adaptive filter? - A naive method for accelerating convergence of adaptive multichannel active noise control.
    Shi D; Gan WS; Shen X; Luo Z; Ji J
    Neural Netw; 2024 Apr; 172():106145. PubMed ID: 38306783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-channel real time active noise control system for infant incubators.
    Liu L; Gujjula S; Kuo SM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():935-8. PubMed ID: 19964251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speech enhancement in discontinuous transmission systems using the constrained-stability least-mean-squares algorithm.
    Górriz JM; Ramírez J; Cruces-Alvarez S; Erdogmus D; Puntonet CG; Lang EW
    J Acoust Soc Am; 2008 Dec; 124(6):3669-83. PubMed ID: 19206795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An effectively causal deep learning algorithm to increase intelligibility in untrained noises for hearing-impaired listeners.
    Healy EW; Tan K; Johnson EM; Wang D
    J Acoust Soc Am; 2021 Jun; 149(6):3943. PubMed ID: 34241481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active Noise Cancellation with MEMS Resonant Microphone Array.
    Liu H; Liu S; Shkel AA; Kim ES
    J Microelectromech Syst; 2020 Oct; 29(5):839-845. PubMed ID: 33746474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A modified least mean square (LMS) algorithm with variable step-size for an adaptive noise canceller].
    Gao H; Niu CM; Wu W
    Space Med Med Eng (Beijing); 2002 Oct; 15(5):366-8. PubMed ID: 12449145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractional lower order moment based adaptive algorithms for active noise control of impulsive noise sources.
    Akhtar MT
    J Acoust Soc Am; 2012 Dec; 132(6):EL456-62. PubMed ID: 23231208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale training to increase speech intelligibility for hearing-impaired listeners in novel noises.
    Chen J; Wang Y; Yoho SE; Wang D; Healy EW
    J Acoust Soc Am; 2016 May; 139(5):2604. PubMed ID: 27250154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speech extraction from vibration signals based on deep learning.
    Wang L; Zheng W; Li S; Huang Q
    PLoS One; 2023; 18(10):e0288847. PubMed ID: 37878667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Objective Signal Analysis for Investigating Feasibility of Active Noise Cancellation in Hearing Screening.
    Cheng HL; Han JY; Zheng WZ; Cheng YF; Chu YC; Lin CM; Chiang MC; Liao WH; Lai YH
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Feedback Active Control Approach to Road Noise Based on a Single Microphone Sensor to Improve Automotive Cabin Sound Comfort.
    Liu H; Lee J
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. End-to-End Deep Convolutional Recurrent Models for Noise Robust Waveform Speech Enhancement.
    Ullah R; Wuttisittikulkij L; Chaudhary S; Parnianifard A; Shah S; Ibrar M; Wahab FE
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compensated active noise cancellation earphone for audiometric screening tests in noisy environments.
    Chang HY; Luo CH; Lo TS; Tai CC
    Int J Audiol; 2019 Nov; 58(11):747-753. PubMed ID: 31215819
    [No Abstract]   [Full Text] [Related]  

  • 18. Performance of Adaptive Noise Cancellation with Normalized Last-Mean-Square Based on the Signal-to-Noise Ratio of Lung and Heart Sound Separation.
    Al-Naggar NQ; Al-Udyni MH
    J Healthc Eng; 2018; 2018():9732762. PubMed ID: 30123445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-based stereophonic acoustic echo suppression without decorrelation.
    Cheng L; Peng R; Li A; Zheng C; Li X
    J Acoust Soc Am; 2021 Aug; 150(2):816. PubMed ID: 34470328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multirate Audio-Integrated Feedback Active Noise Control Systems Using Decimated-Band Adaptive Filters for Reducing Narrowband Noises.
    Siswanto A; Chang CY; Kuo SM
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33238463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.