These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 33839607)

  • 1. Identifying the critical transmission sectors with energy-water nexus pressures in China's supply chain networks.
    Li Y; Yang L; Wang D; Zhou Y; He W; Li B; Yang Y; Lv H
    J Environ Manage; 2021 Jul; 289():112518. PubMed ID: 33839607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relieving the water-energy nexus pressure through whole supply chain management: Evidence from the provincial-level analysis in China.
    Yang L; Li Y; Wang D; Wang Z; Yang Y; Lv H; Zhang X
    Sci Total Environ; 2022 Feb; 807(Pt 2):150809. PubMed ID: 34626641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What Induces the Energy-Water Nexus in China's Supply Chains?
    Shi J; Li H; An H; Guan J; Ma N
    Environ Sci Technol; 2020 Jan; 54(1):372-379. PubMed ID: 31795632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition towards dual control of CO
    Wang W; Wang Z; Yu Z; Feng C
    J Environ Manage; 2023 Dec; 348():119493. PubMed ID: 37925983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying economic-social-environmental trade-offs and synergies of water-supply constraints: An application to the capital region of China.
    Zhao D; Liu J; Sun L; Ye B; Hubacek K; Feng K; Varis O
    Water Res; 2021 May; 195():116986. PubMed ID: 33721677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Managing the water-energy-food nexus in China by adjusting critical final demands and supply chains: An input-output analysis.
    Deng HM; Wang C; Cai WJ; Liu Y; Zhang LX
    Sci Total Environ; 2020 Jun; 720():137635. PubMed ID: 32325592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-energy-carbon nexus in China's intra and inter-regional trade.
    Tian P; Lu H; Reinout H; Li D; Zhang K; Yang Y
    Sci Total Environ; 2022 Feb; 806(Pt 2):150666. PubMed ID: 34597542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying the driving factors of water consumption from water-energy-food nexus in the Yangtze River Delta region, China.
    Yu Y; Zhang C; Zhu W; Park S; Shi Q
    Environ Sci Pollut Res Int; 2021 Sep; 28(35):48638-48655. PubMed ID: 33928497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A factorial stepwise-clustering input-output model for unveiling water-carbon nexus from multi-policy perspectives.
    Wang PP; Huang GH; Li YP
    Sci Total Environ; 2023 Mar; 866():161315. PubMed ID: 36603622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiregional input-output model for China's farm land and water use.
    Guo S; Shen GQ
    Environ Sci Technol; 2015 Jan; 49(1):403-14. PubMed ID: 25486067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying Direct and Indirect Spatial Food-Energy-Water (FEW) Nexus in China.
    Liang Y; Li Y; Liang S; Feng C; Xu L; Qi J; Yang X; Wang Y; Zhang C; Li K; Li H; Yang Z
    Environ Sci Technol; 2020 Aug; 54(16):9791-9803. PubMed ID: 32677825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inequality of household energy and water consumption in China: An input-output analysis.
    Fan JL; Chen KY; Zhang X
    J Environ Manage; 2020 Sep; 269():110716. PubMed ID: 32560981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural path analysis of China's coal consumption using input-output frameworks.
    Yang L; Li L; Zhu K; Xie R; Wang Z
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):6796-6812. PubMed ID: 31875289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the environmental sustainability performance of global supply chains: A multi-regional input-output analysis for carbon, sulphur oxide and water footprints.
    Acquaye A; Feng K; Oppon E; Salhi S; Ibn-Mohammed T; Genovese A; Hubacek K
    J Environ Manage; 2017 Feb; 187():571-585. PubMed ID: 27876164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of China's water footprint and virtual water trade: A global trade assessment.
    Tian X; Sarkis J; Geng Y; Qian Y; Gao C; Bleischwitz R; Xu Y
    Environ Int; 2018 Dec; 121(Pt 1):178-188. PubMed ID: 30216770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncovering regional disparity of China's water footprint and inter-provincial virtual water flows.
    Dong H; Geng Y; Fujita T; Fujii M; Hao D; Yu X
    Sci Total Environ; 2014 Dec; 500-501():120-30. PubMed ID: 25222751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the measurement and the changing trend of the energy use of China's economic sectors: based on cross-region input-output model.
    Wang F; Gao C; Ou Q
    Environ Sci Pollut Res Int; 2021 Feb; 28(5):5296-5315. PubMed ID: 32960442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing transmissions of atmospheric heavy metals hidden in the Chinese supply chain.
    Yang G; Guo Z; Wu W
    J Environ Manage; 2024 Feb; 351():119891. PubMed ID: 38150928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How the manufacturing economy impacts China's energy-related GHG emissions: Insights from structural path analysis.
    Zhang B; Zhang Y; Wu X; Guan C; Qiao H
    Sci Total Environ; 2020 Nov; 743():140769. PubMed ID: 32663693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Globalized energy-water nexus through international trade: The dominant role of non-energy commodities for worldwide energy-related water use.
    Liu Y; Chen B; Chen G; Li Z; Meng J; Tasawar H
    Sci Total Environ; 2020 Sep; 736():139582. PubMed ID: 32485378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.