BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 33839633)

  • 1. Continuous chest compressions with asynchronous ventilation improve survival in a neonatal swine model of asphyxial cardiac arrest.
    Aggelina A; Pantazopoulos I; Giokas G; Chalkias A; Mavrovounis G; Papalois A; Douvanas A; Xanthos T; Iacovidou N
    Am J Emerg Med; 2021 Oct; 48():60-66. PubMed ID: 33839633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3:1 compression to ventilation ratio versus continuous chest compression with asynchronous ventilation in a porcine model of neonatal resuscitation.
    Schmölzer GM; O'Reilly M; Labossiere J; Lee TF; Cowan S; Nicoll J; Bigam DL; Cheung PY
    Resuscitation; 2014 Feb; 85(2):270-5. PubMed ID: 24161768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous Chest Compressions During Sustained Inflations in a Perinatal Asphyxial Cardiac Arrest Lamb Model.
    Vali P; Chandrasekharan P; Rawat M; Gugino S; Koenigsknecht C; Helman J; Mathew B; Berkelhamer S; Nair J; Lakshminrusimha S
    Pediatr Crit Care Med; 2017 Aug; 18(8):e370-e377. PubMed ID: 28661972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chest compressions versus ventilation plus chest compressions: a randomized trial in a pediatric asphyxial cardiac arrest animal model.
    Botran M; Lopez-Herce J; Urbano J; Solana MJ; Garcia A; Carrillo A
    Intensive Care Med; 2011 Nov; 37(11):1873-80. PubMed ID: 21847647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chest compressions superimposed with sustained inflations during cardiopulmonary resuscitation in asphyxiated pediatric piglets.
    Morin CMD; Cheung PY; Lee TF; O'Reilly M; Schmölzer GM
    Pediatr Res; 2024 Mar; 95(4):988-995. PubMed ID: 36932182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulated mouth-to-mouth ventilation and chest compressions (bystander cardiopulmonary resuscitation) improves outcome in a swine model of prehospital pediatric asphyxial cardiac arrest.
    Berg RA; Hilwig RW; Kern KB; Babar I; Ewy GA
    Crit Care Med; 1999 Sep; 27(9):1893-9. PubMed ID: 10507615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. End-Tidal CO2-Guided Chest Compression Delivery Improves Survival in a Neonatal Asphyxial Cardiac Arrest Model.
    Hamrick JT; Hamrick JL; Bhalala U; Armstrong JS; Lee JH; Kulikowicz E; Lee JK; Kudchadkar SR; Koehler RC; Hunt EA; Shaffner DH
    Pediatr Crit Care Med; 2017 Nov; 18(11):e575-e584. PubMed ID: 28817508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myocardial perfusion and oxidative stress after 21% vs. 100% oxygen ventilation and uninterrupted chest compressions in severely asphyxiated piglets.
    Solevåg AL; Schmölzer GM; O'Reilly M; Lu M; Lee TF; Hornberger LK; Nakstad B; Cheung PY
    Resuscitation; 2016 Sep; 106():7-13. PubMed ID: 27344929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neonatal resuscitation with continuous chest compressions and high frequency percussive ventilation in preterm lambs.
    Giusto E; Sankaran D; Lesneski A; Joudi H; Hardie M; Hammitt V; Zeinali L; Lakshminrusimha S; Vali P
    Pediatr Res; 2024 Jan; 95(1):160-166. PubMed ID: 37726545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of chest compressions directed by end-tidal CO2 feedback in a pediatric resuscitation model of basic life support.
    Hamrick JL; Hamrick JT; Lee JK; Lee BH; Koehler RC; Shaffner DH
    J Am Heart Assoc; 2014 Apr; 3(2):e000450. PubMed ID: 24732917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [An experimental study on the effects of rhythmic abdominal lifting and compression during cardiopulmonary resuscitation in a swine model of asphyxia].
    Li XM; Wang LX; Liu YH; Sun K; Ma LZ; Guo XD; Li HQ
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2012 Apr; 24(4):237-40. PubMed ID: 22464579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination pharmacotherapy improves neurological outcome after asphyxial cardiac arrest.
    Varvarousi G; Johnson EO; Goulas S; Agrogiannis G; Valsamakis N; Perrea D; Stefanadis C; Papadimitriou L; Xanthos T
    Resuscitation; 2012 Apr; 83(4):527-32. PubMed ID: 21963816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiopulmonary resuscitation with chest compressions during sustained inflations: a new technique of neonatal resuscitation that improves recovery and survival in a neonatal porcine model.
    Schmölzer GM; O'Reilly M; Labossiere J; Lee TF; Cowan S; Qin S; Bigam DL; Cheung PY
    Circulation; 2013 Dec; 128(23):2495-503. PubMed ID: 24088527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between synchronized and non-synchronized ventilation and between guided and non-guided chest compressions during resuscitation in a pediatric animal model after asphyxial cardiac arrest.
    Manrique G; García M; Fernández SN; González R; Solana MJ; López J; Urbano J; López-Herce J
    PLoS One; 2019; 14(7):e0219660. PubMed ID: 31318890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Periodic acceleration (pGz) CPR in a swine model of asphyxia induced cardiac arrest. Short-term hemodynamic comparisons.
    Adams JA; Bassuk JA; Arias J; Wu H; Jorapur V; Lamas GA; Kurlansky P
    Resuscitation; 2008 Apr; 77(1):132-8. PubMed ID: 18164796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous chest compressions with asynchronous ventilations increase carotid blood flow in the perinatal asphyxiated lamb model.
    Vali P; Lesneski A; Hardie M; Alhassen Z; Chen P; Joudi H; Sankaran D; Lakshminrusimha S
    Pediatr Res; 2021 Oct; 90(4):752-758. PubMed ID: 33469187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asynchronous ventilation at 120 compared with 90 or 100 compressions per minute improves haemodynamic recovery in asphyxiated newborn piglets.
    Patel S; Cheung PY; Lee TF; Pasquin MP; Lu M; O'Reilly M; Schmölzer GM
    Arch Dis Child Fetal Neonatal Ed; 2020 Jul; 105(4):357-363. PubMed ID: 31123054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Survival and neurologic outcome after cardiopulmonary resuscitation with four different chest compression-ventilation ratios.
    Sanders AB; Kern KB; Berg RA; Hilwig RW; Heidenrich J; Ewy GA
    Ann Emerg Med; 2002 Dec; 40(6):553-62. PubMed ID: 12447330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Doubling survival and improving clinical outcomes using a left ventricular assist device instead of chest compressions for resuscitation after prolonged cardiac arrest: a large animal study.
    Derwall M; Brücken A; Bleilevens C; Ebeling A; Föhr P; Rossaint R; Kern KB; Nix C; Fries M
    Crit Care; 2015 Mar; 19(1):123. PubMed ID: 25886909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nitric oxide synthase modulation on resuscitation success in a swine ventricular fibrillation cardiac arrest model.
    Zhang Y; Boddicker KA; Rhee BJ; Davies LR; Kerber RE
    Resuscitation; 2005 Oct; 67(1):127-34. PubMed ID: 16039037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.