These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 33839679)
1. Crystal structure of higher plant heme oxygenase-1 and its mechanism of interaction with ferredoxin. Tohda R; Tanaka H; Mutoh R; Zhang X; Lee YH; Konuma T; Ikegami T; Migita CT; Kurisu G J Biol Chem; 2021; 296():100217. PubMed ID: 33839679 [TBL] [Abstract][Full Text] [Related]
2. Spectroscopic characterization of a higher plant heme oxygenase isoform-1 from Glycine max (soybean)--coordination structure of the heme complex and catabolism of heme. Gohya T; Zhang X; Yoshida T; Migita CT FEBS J; 2006 Dec; 273(23):5384-99. PubMed ID: 17076701 [TBL] [Abstract][Full Text] [Related]
3. Expression, purification and crystal structure determination of a ferredoxin reductase from the actinobacterium Thermobifida fusca. Rodriguez Buitrago JA; Klünemann T; Blankenfeldt W; Schallmey A Acta Crystallogr F Struct Biol Commun; 2020 Aug; 76(Pt 8):334-340. PubMed ID: 32744244 [TBL] [Abstract][Full Text] [Related]
4. Biochemical and structural characterization of Pseudomonas aeruginosa Bfd and FPR: ferredoxin NADP+ reductase and not ferredoxin is the redox partner of heme oxygenase under iron-starvation conditions. Wang A; Zeng Y; Han H; Weeratunga S; Morgan BN; Moënne-Loccoz P; Schönbrunn E; Rivera M Biochemistry; 2007 Oct; 46(43):12198-211. PubMed ID: 17915950 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of heme oxygenase-1 from cyanobacterium Synechocystis sp. PCC 6803 in complex with heme. Sugishima M; Migita CT; Zhang X; Yoshida T; Fukuyama K Eur J Biochem; 2004 Nov; 271(22):4517-25. PubMed ID: 15560792 [TBL] [Abstract][Full Text] [Related]
7. Variation of the oxidation state of verdoheme in the heme oxygenase reaction. Gohya T; Sato M; Zhang X; Migita CT Biochem Biophys Res Commun; 2008 Nov; 376(2):293-8. PubMed ID: 18778686 [TBL] [Abstract][Full Text] [Related]
8. Structural basis for binding and transfer of heme in bacterial heme-acquisition systems. Naoe Y; Nakamura N; Rahman MM; Tosha T; Nagatoishi S; Tsumoto K; Shiro Y; Sugimoto H Proteins; 2017 Dec; 85(12):2217-2230. PubMed ID: 28913898 [TBL] [Abstract][Full Text] [Related]
9. Serendipitous crystallization and structure determination of bacterioferritin from Achromobacter. Dwivedy A; Jha B; Singh KH; Ahmad M; Ashraf A; Kumar D; Biswal BK Acta Crystallogr F Struct Biol Commun; 2018 Sep; 74(Pt 9):558-566. PubMed ID: 30198888 [TBL] [Abstract][Full Text] [Related]
10. Heme utilization by pathogenic bacteria: not all pathways lead to biliverdin. Wilks A; Ikeda-Saito M Acc Chem Res; 2014 Aug; 47(8):2291-8. PubMed ID: 24873177 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of NirF: insights into its role in heme d Klünemann T; Nimtz M; Jänsch L; Layer G; Blankenfeldt W FEBS J; 2021 Jan; 288(1):244-261. PubMed ID: 32255259 [TBL] [Abstract][Full Text] [Related]
12. The hydrogen-bonding network in heme oxygenase also functions as a modulator of enzyme dynamics: chaotic motions upon disrupting the H-bond network in heme oxygenase from Pseudomonas aeruginosa. Rodríguez JC; Zeng Y; Wilks A; Rivera M J Am Chem Soc; 2007 Sep; 129(38):11730-42. PubMed ID: 17764179 [TBL] [Abstract][Full Text] [Related]
13. Structures of the substrate-free and product-bound forms of HmuO, a heme oxygenase from corynebacterium diphtheriae: x-ray crystallography and molecular dynamics investigation. Unno M; Ardèvol A; Rovira C; Ikeda-Saito M J Biol Chem; 2013 Nov; 288(48):34443-58. PubMed ID: 24106279 [TBL] [Abstract][Full Text] [Related]
14. Dual role of the active site 'lid' regions of protochlorophyllide oxidoreductase in photocatalysis and plant development. Zhang S; Godwin ARF; Taylor A; Hardman SJO; Jowitt TA; Johannissen LO; Hay S; Baldock C; Heyes DJ; Scrutton NS FEBS J; 2021 Jan; 288(1):175-189. PubMed ID: 32866986 [TBL] [Abstract][Full Text] [Related]
15. Crystal structures of ferrous and CO-, CN(-)-, and NO-bound forms of rat heme oxygenase-1 (HO-1) in complex with heme: structural implications for discrimination between CO and O2 in HO-1. Sugishima M; Sakamoto H; Noguchi M; Fukuyama K Biochemistry; 2003 Aug; 42(33):9898-905. PubMed ID: 12924938 [TBL] [Abstract][Full Text] [Related]
16. Protein expressed by the ho2 gene of the cyanobacterium Synechocystis sp. PCC 6803 is a true heme oxygenase. Properties of the heme and enzyme complex. Zhang X; Migita CT; Sato M; Sasahara M; Yoshida T FEBS J; 2005 Feb; 272(4):1012-22. PubMed ID: 15691334 [TBL] [Abstract][Full Text] [Related]
17. Structural and functional characterization of peptidyl-tRNA hydrolase from Klebsiella pneumoniae. Mundra S; Pal RK; Tripathi S; Jain A; Arora A Biochim Biophys Acta Proteins Proteom; 2021 Jan; 1869(1):140554. PubMed ID: 33068756 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of rat heme oxygenase-1 in complex with biliverdin-iron chelate. Conformational change of the distal helix during the heme cleavage reaction. Sugishima M; Sakamoto H; Higashimoto Y; Noguchi M; Fukuyama K J Biol Chem; 2003 Aug; 278(34):32352-8. PubMed ID: 12794075 [TBL] [Abstract][Full Text] [Related]
19. Oxidation of heme to beta- and delta-biliverdin by Pseudomonas aeruginosa heme oxygenase as a consequence of an unusual seating of the heme. Caignan GA; Deshmukh R; Wilks A; Zeng Y; Huang HW; Moënne-Loccoz P; Bunce RA; Eastman MA; Rivera M J Am Chem Soc; 2002 Dec; 124(50):14879-92. PubMed ID: 12475329 [TBL] [Abstract][Full Text] [Related]
20. Structural basis of dimerization and dual W-box DNA recognition by rice WRKY domain. Cheng X; Zhao Y; Jiang Q; Yang J; Zhao W; Taylor IA; Peng YL; Wang D; Liu J Nucleic Acids Res; 2019 May; 47(8):4308-4318. PubMed ID: 30783673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]