These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 33839948)
1. An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition. Liu N; Liu J; Niu X; Wang J; Guo R; Mo Z Mikrochim Acta; 2021 Apr; 188(5):163. PubMed ID: 33839948 [TBL] [Abstract][Full Text] [Related]
2. Perylene-functionalized graphene sheets modified with chitosan for voltammetric discrimination of tryptophan enantiomers. Yang X; Niu X; Mo Z; Guo R; Liu N; Zhao P; Liu Z Mikrochim Acta; 2019 May; 186(6):333. PubMed ID: 31065866 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical recognition of tryptophan enantiomers using a multi-walled carbon nanotube@polydopamine composite loaded with copper(II). Qian J; Yi Y; Zhang D; Zhu G Mikrochim Acta; 2019 May; 186(6):358. PubMed ID: 31098704 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical chiral sensing of tryptophan enantiomers by using 3D nitrogen-doped reduced graphene oxide and self-assembled polysaccharides. Niu X; Yang X; Mo Z; Liu N; Guo R; Pan Z; Liu Z Mikrochim Acta; 2019 Jul; 186(8):557. PubMed ID: 31327066 [TBL] [Abstract][Full Text] [Related]
5. Chiral voltammetric sensor for tryptophan enantiomers by using a self-assembled multiwalled carbon nanotubes/polyaniline/sodium alginate composite. Niu X; Yang X; Li H; Shi Q; Wang K Chirality; 2021 May; 33(5):248-260. PubMed ID: 33675271 [TBL] [Abstract][Full Text] [Related]
6. Nafion-stabilized black phosphorus nanosheets-maltosyl-β-cyclodextrin as a chiral sensor for tryptophan enantiomers. Zou J; Yu JG Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110910. PubMed ID: 32409064 [TBL] [Abstract][Full Text] [Related]
7. A sensitive electrochemical sensor for chiral detection of tryptophan enantiomers by using carbon black and β‑cyclodextrin. Liang J; Song Y; Zhao Y; Gao Y; Hou J; Yang G Mikrochim Acta; 2023 Oct; 190(11):433. PubMed ID: 37814099 [TBL] [Abstract][Full Text] [Related]
8. Voltammetric chiral discrimination of tryptophan using a multilayer nanocomposite with implemented amino-modified β-cyclodextrin as recognition element. Song J; Yang C; Ma J; Han Q; Ran P; Fu Y Mikrochim Acta; 2018 Mar; 185(4):230. PubMed ID: 29594758 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of an electrochemical chiral sensor via an integrated polysaccharides/3D nitrogen-doped graphene-CNT frame. Niu X; Yang X; Mo Z; Wang J; Pan Z; Liu Z; Shuai C; Liu G; Liu N; Guo R Bioelectrochemistry; 2020 Feb; 131():107396. PubMed ID: 31704455 [TBL] [Abstract][Full Text] [Related]
10. A molecularly imprinted copolymer based electrochemical sensor for the highly sensitive detection of L-Tryptophan. Xia Y; Zhao F; Zeng B Talanta; 2020 Jan; 206():120245. PubMed ID: 31514823 [TBL] [Abstract][Full Text] [Related]
11. Determination of the biomarker L-tryptophan level in diabetic and normal human serum based on an electrochemical sensing method using reduced graphene oxide/gold nanoparticles/18-crown-6. Khoshnevisan K; Torabi F; Baharifar H; Sajjadi-Jazi SM; Afjeh MS; Faridbod F; Larijani B; Khorramizadeh MR Anal Bioanal Chem; 2020 Jun; 412(15):3615-3627. PubMed ID: 32291517 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical chiral sensor for recognition of amino acid enantiomers with cyclodextrin-based microporous organic networks. Zhang X; Wang F; Chen Z Anal Chim Acta; 2024 Aug; 1316():342879. PubMed ID: 38969416 [TBL] [Abstract][Full Text] [Related]
13. Development of a chiral electrochemical sensor based on copper-amino acid mercaptide nanorods for enantioselective discrimination of tryptophan enantiomers. Pan QX; Yang YC; Zhao NN; Zhang B; Cui L; Zhang CY Anal Chim Acta; 2023 Sep; 1272():341480. PubMed ID: 37355327 [TBL] [Abstract][Full Text] [Related]
14. Common materials, extraordinary behavior: An ultrasensitive and enantioselective strategy for D-Tryptophan recognition based on electrochemical Au@p-L-cysteine chiral interface. Deng Y; Zhang Z; Pang Y; Zhou X; Wang Y; Zhang Y; Yuan Y Anal Chim Acta; 2022 Sep; 1227():340331. PubMed ID: 36089298 [TBL] [Abstract][Full Text] [Related]
15. Novel N-Doped Carbon Dots/β-Cyclodextrin Nanocomposites for Enantioselective Recognition of Tryptophan Enantiomers. Xiao Q; Lu S; Huang C; Su W; Huang S Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27834863 [TBL] [Abstract][Full Text] [Related]
16. Immobilization of 6-O-α-maltosyl-β-cyclodextrin on the surface of black phosphorus nanosheets for selective chiral recognition of tyrosine enantiomers. Zou J; Lan XW; Zhao GQ; Huang ZN; Liu YP; Yu JG Mikrochim Acta; 2020 Nov; 187(11):636. PubMed ID: 33141322 [TBL] [Abstract][Full Text] [Related]
17. Rapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer-modified glassy carbon electrode. Wu Y; Deng P; Tian Y; Ding Z; Li G; Liu J; Zuberi Z; He Q Bioelectrochemistry; 2020 Feb; 131():107393. PubMed ID: 31698180 [TBL] [Abstract][Full Text] [Related]
18. Graphene-ferrocene functionalized cyclodextrin composite with high electrochemical recognition capability for phenylalanine enantiomers. Niu X; Mo Z; Yang X; Shuai C; Liu N; Guo R Bioelectrochemistry; 2019 Aug; 128():74-82. PubMed ID: 30933903 [TBL] [Abstract][Full Text] [Related]
19. A facile route to prepare functional mesoporous organosilica spheres with electroactive units for chiral recognition of amino acids. Wu D; Tan W; Li H; Lei Z; Deng L; Kong Y Analyst; 2019 Jan; 144(2):543-549. PubMed ID: 30411759 [TBL] [Abstract][Full Text] [Related]
20. Highly sensitive detection of multiple antiviral drugs using graphitized hydroxylated multi-walled carbon nanotubes/ionic liquids-based electrochemical sensors. Zhang Z; Zheng H; Liu Y; Ma S; Feng Q; Qu J; Zhu X Environ Res; 2024 May; 249():118466. PubMed ID: 38354882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]