These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33839995)

  • 1. Three-dimensional quantification of twisting in the Arabidopsis petiole.
    Otsuka Y; Tsukaya H
    J Plant Res; 2021 Jul; 134(4):811-819. PubMed ID: 33839995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arabidopsis petiole torsions induced by lateral light or externally supplied auxin require microtubule-associated TORTIFOLIA1/SPIRAL2.
    Borchers A; Deckena M; Buschmann H
    Protoplasma; 2018 Sep; 255(5):1505-1515. PubMed ID: 29654520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The change of gravity vector induces short-term phosphoproteomic alterations in Arabidopsis.
    Yang Z; Guo G; Yang N; Pun SS; Ho TKL; Ji L; Hu I; Zhang J; Burlingame AL; Li N
    J Proteomics; 2020 Apr; 218():103720. PubMed ID: 32120044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The BLADE-ON-PETIOLE 1 gene controls leaf pattern formation through the modulation of meristematic activity in Arabidopsis.
    Ha CM; Kim GT; Kim BC; Jun JH; Soh MS; Ueno Y; Machida Y; Tsukaya H; Nam HG
    Development; 2003 Jan; 130(1):161-72. PubMed ID: 12441300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic control of petiole length in Arabidopsis thaliana.
    Tsukaya H; Kozuka T; Kim GT
    Plant Cell Physiol; 2002 Oct; 43(10):1221-8. PubMed ID: 12407202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole transcriptome analysis and construction of a ceRNA regulatory network related to leaf and petiole development in Chinese cabbage (Brassica campestris L. ssp. pekinensis).
    Shi F; Zhao Z; Jiang Y; Liu S; Tan C; Liu C; Ye X; Liu Z
    BMC Genomics; 2023 Mar; 24(1):144. PubMed ID: 36964498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex I-complex II ratio strongly differs in various organs of Arabidopsis thaliana.
    Peters K; Niessen M; Peterhänsel C; Späth B; Hölzle A; Binder S; Marchfelder A; Braun HP
    Plant Mol Biol; 2012 Jun; 79(3):273-84. PubMed ID: 22527752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional patterns of cell division and expansion throughout the development of Arabidopsis thaliana leaves.
    Kalve S; Fotschki J; Beeckman T; Vissenberg K; Beemster GT
    J Exp Bot; 2014 Dec; 65(22):6385-97. PubMed ID: 25205574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of plant shoot architecture on leaf cooling: a coupled heat and mass transfer model.
    Bridge LJ; Franklin KA; Homer ME
    J R Soc Interface; 2013 Aug; 10(85):20130326. PubMed ID: 23720538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blue light-induced phototropism of inflorescence stems and petioles is mediated by phototropin family members phot1 and phot2.
    Kagawa T; Kimura M; Wada M
    Plant Cell Physiol; 2009 Oct; 50(10):1774-85. PubMed ID: 19689999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Key proliferative activity in the junction between the leaf blade and leaf petiole of Arabidopsis.
    Ichihashi Y; Kawade K; Usami T; Horiguchi G; Takahashi T; Tsukaya H
    Plant Physiol; 2011 Nov; 157(3):1151-62. PubMed ID: 21880932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acclimation to wind loads and/or contact stimuli? A biomechanical study of peltate leaves of Pilea peperomioides.
    Langer M; Hegge E; Speck T; Speck O
    J Exp Bot; 2022 Feb; 73(4):1236-1252. PubMed ID: 34893822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the shapes of leaves and flowers upon overexpression of cytochrome P450 in Arabidopsis.
    Kim GT; Tsukaya H; Saito Y; Uchimiya H
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):9433-7. PubMed ID: 10430960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A negative effector of blue light-induced and gravitropic bending in Arabidopsis.
    Knauer T; Dümmer M; Landgraf F; Forreiter C
    Plant Physiol; 2011 May; 156(1):439-47. PubMed ID: 21367967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local light signaling at the leaf tip drives remote differential petiole growth through auxin-gibberellin dynamics.
    Küpers JJ; Snoek BL; Oskam L; Pantazopoulou CK; Matton SEA; Reinen E; Liao CY; Eggermont EDC; Weekamp H; Biddanda-Devaiah M; Kohlen W; Weijers D; Pierik R
    Curr Biol; 2023 Jan; 33(1):75-85.e5. PubMed ID: 36538931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana.
    van der Graaff E; Dulk-Ras AD; Hooykaas PJ; Keller B
    Development; 2000 Nov; 127(22):4971-80. PubMed ID: 11044410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade.
    Kozuka T; Kobayashi J; Horiguchi G; Demura T; Sakakibara H; Tsukaya H; Nagatani A
    Plant Physiol; 2010 Aug; 153(4):1608-18. PubMed ID: 20538889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis.
    Hepworth SR; Zhang Y; McKim S; Li X; Haughn GW
    Plant Cell; 2005 May; 17(5):1434-48. PubMed ID: 15805484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gravitropism in leaves of Arabidopsis thaliana (L.) Heynh.
    Mano E; Horiguchi G; Tsukaya H
    Plant Cell Physiol; 2006 Feb; 47(2):217-23. PubMed ID: 16344262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The different growth responses of the Arabidopsis thaliana leaf blade and the petiole during shade avoidance are regulated by photoreceptors and sugar.
    Kozuka T; Horiguchi G; Kim GT; Ohgishi M; Sakai T; Tsukaya H
    Plant Cell Physiol; 2005 Jan; 46(1):213-23. PubMed ID: 15659441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.