These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33840327)

  • 21. Ex Vivo Assessment of Cortical Bone Properties Using Low-Frequency Ultrasonic Guided Waves.
    Pereira D; Fernandes J; Belanger P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 May; 67(5):910-922. PubMed ID: 31825866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Noninvasive assessment of human jawbone using ultrasonic guided waves.
    Mahmoud A; Cortes D; Abaza A; Ammar H; Hazey M; Ngan P; Crout R; Mukdadi O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1316-27. PubMed ID: 18599419
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasonic guided waves dispersion reversal for long bone thickness evaluation: a simulation study.
    Xu K; Liu C; Ta D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1930-3. PubMed ID: 24110091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-frequency axial transmission bone ultrasonometer.
    Tatarinov A; Egorov V; Sarvazyan N; Sarvazyan A
    Ultrasonics; 2014 Jul; 54(5):1162-9. PubMed ID: 24206675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Velocity dispersion of guided waves propagating in a free gradient elastic plate: application to cortical bone.
    Vavva MG; Protopappas VC; Gergidis LN; Charalambopoulos A; Fotiadis DI; Polyzos D
    J Acoust Soc Am; 2009 May; 125(5):3414-27. PubMed ID: 19425680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dispersion characteristics of the flexural wave assessed using low frequency (50-150kHz) point-contact transducers: A feasibility study on bone-mimicking phantoms.
    Kassou K; Remram Y; Laugier P; Minonzio JG
    Ultrasonics; 2017 Nov; 81():1-9. PubMed ID: 28570855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones.
    Protopappas VC; Kourtis IC; Kourtis LC; Malizos KN; Massalas CV; Fotiadis DI
    J Acoust Soc Am; 2007 Jun; 121(6):3907-21. PubMed ID: 17552737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiridge-based analysis for separating individual modes from multimodal guided wave signals in long bones.
    Xu K; Ta D; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2480-90. PubMed ID: 21041135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical Simulation and Non-Destructive Characterization of Material Property and Defect Analysis of Cortical Bone Using Laser Ultrasound Techniques.
    Yang CH; Jeyaprakash N; Tseng YJ
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3917-3932. PubMed ID: 34325509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of ultrasonic waves propagating in a bone plate over a water half-space with and without overlying soft tissue.
    Tran TN; Stieglitz L; Gu YJ; Le LH
    Ultrasound Med Biol; 2013 Dec; 39(12):2422-30. PubMed ID: 24035409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Axial Transmission: Techniques, Devices and Clinical Results.
    Bochud N; Laugier P
    Adv Exp Med Biol; 2022; 1364():55-94. PubMed ID: 35508871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multichannel instantaneous frequency analysis of ultrasound propagating in cancellous bone.
    Nagatani Y; Tachibana RO
    J Acoust Soc Am; 2014 Mar; 135(3):1197-206. PubMed ID: 24606262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of superimposed ultrasonic guided waves in long bones by the joint approximate diagonalization of eigen-matrices algorithm.
    Song X; Ta D; Wang W
    Ultrasound Med Biol; 2011 Oct; 37(10):1704-13. PubMed ID: 21924208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Guided ultrasonic waves in long bones: modelling, experiment and in vivo application.
    Nicholson PH; Moilanen P; Kärkkäinen T; Timonen J; Cheng S
    Physiol Meas; 2002 Nov; 23(4):755-68. PubMed ID: 12450274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In Vivo Characterization of Cortical Bone Using Guided Waves Measured by Axial Transmission.
    Vallet Q; Bochud N; Chappard C; Laugier P; Minonzio JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1361-1371. PubMed ID: 27392349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multichannel processing for dispersion curves extraction of ultrasonic axial-transmission signals: Comparisons and case studies.
    Xu K; Ta D; Cassereau D; Hu B; Wang W; Laugier P; Minonzio JG
    J Acoust Soc Am; 2016 Sep; 140(3):1758. PubMed ID: 27914382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimation of Thickness and Speed of Sound in Cortical Bone Using Multifocus Pulse-Echo Ultrasound.
    Nguyen Minh H; Du J; Raum K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):568-579. PubMed ID: 31647428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sparse SVD Method for High-Resolution Extraction of the Dispersion Curves of Ultrasonic Guided Waves.
    Xu K; Minonzio JG; Ta D; Hu B; Wang W; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Oct; 63(10):1514-1524. PubMed ID: 27448347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting bone strength with ultrasonic guided waves.
    Bochud N; Vallet Q; Minonzio JG; Laugier P
    Sci Rep; 2017 Mar; 7():43628. PubMed ID: 28256568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A rapid signal processing technique to remove the effect of dispersion from guided wave signals.
    Wilcox PD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Apr; 50(4):419-27. PubMed ID: 12744398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.