These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 33840880)
1. The Emergence of Richly Organized Semantic Knowledge from Simple Statistics: A Synthetic Review. Unger L; Fisher AV Dev Rev; 2021 Jun; 60():. PubMed ID: 33840880 [TBL] [Abstract][Full Text] [Related]
3. The Role of Co-Occurrence Statistics in Developing Semantic Knowledge. Unger L; Vales C; Fisher AV Cogn Sci; 2020 Sep; 44(9):e12894. PubMed ID: 32929791 [TBL] [Abstract][Full Text] [Related]
4. A mathematical theory of semantic development in deep neural networks. Saxe AM; McClelland JL; Ganguli S Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11537-11546. PubMed ID: 31101713 [TBL] [Abstract][Full Text] [Related]
5. Rapid, experience-related changes in the organization of children's semantic knowledge. Unger L; Fisher AV J Exp Child Psychol; 2019 Mar; 179():1-22. PubMed ID: 30468918 [TBL] [Abstract][Full Text] [Related]
6. Statistical learning is constrained to less abstract patterns in complex sensory input (but not the least). Emberson LL; Rubinstein DY Cognition; 2016 Aug; 153():63-78. PubMed ID: 27139779 [TBL] [Abstract][Full Text] [Related]
7. Structured Semantic Knowledge Can Emerge Automatically from Predicting Word Sequences in Child-Directed Speech. Huebner PA; Willits JA Front Psychol; 2018; 9():133. PubMed ID: 29520243 [TBL] [Abstract][Full Text] [Related]
8. When Stronger Knowledge Slows You Down: Semantic Relatedness Predicts Children's Co-Activation of Related Items in a Visual Search Paradigm. Vales C; Fisher AV Cogn Sci; 2019 Jun; 43(6):e12746. PubMed ID: 31204802 [TBL] [Abstract][Full Text] [Related]
9. Cognitive IT-systems for big data analysis in medicine. Isakova J Int J Risk Saf Med; 2015; 27 Suppl 1():S108-9. PubMed ID: 26639685 [TBL] [Abstract][Full Text] [Related]
10. Exposure to co-occurrence regularities in language drives semantic integration of new words. Savic O; Unger L; Sloutsky VM J Exp Psychol Learn Mem Cogn; 2022 Jul; 48(7):1064-1081. PubMed ID: 35389699 [TBL] [Abstract][Full Text] [Related]
13. A Pupillometric Examination of Cognitive Control in Taxonomic and Thematic Semantic Memory. Geller J; Landrigan JF; Mirman D J Cogn; 2019 Feb; 2(1):6. PubMed ID: 31517228 [TBL] [Abstract][Full Text] [Related]
14. Experience and maturation: The contribution of co-occurrence regularities in language to the development of semantic organization. Savic O; Unger L; Sloutsky VM Child Dev; 2023 Jan; 94(1):142-158. PubMed ID: 35962586 [TBL] [Abstract][Full Text] [Related]
15. Stable organization of the early lexical-semantic network in 18- and 24-month-old preterm and full-term infants: an eye-tracker study. Ragó A; Varga Z; Szabo M Front Psychol; 2023; 14():1194770. PubMed ID: 37809304 [TBL] [Abstract][Full Text] [Related]
16. A Critical Review of Network-Based and Distributional Approaches to Semantic Memory Structure and Processes. Kumar AA; Steyvers M; Balota DA Top Cogn Sci; 2022 Jan; 14(1):54-77. PubMed ID: 34092042 [TBL] [Abstract][Full Text] [Related]
17. An ontological framework for the formalization, organization and usage of TCM-Knowledge. Long H; Zhu Y; Jia L; Gao B; Liu J; Liu L; Herre H BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):53. PubMed ID: 30961578 [TBL] [Abstract][Full Text] [Related]
18. The large-scale structure of semantic networks: statistical analyses and a model of semantic growth. Steyvers M; Tenenbaum JB Cogn Sci; 2005 Jan; 29(1):41-78. PubMed ID: 21702767 [TBL] [Abstract][Full Text] [Related]