These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 33840893)

  • 1. Ternary Cu
    Jathar SB; Rondiya SR; Jadhav YA; Nilegave DS; Cross RW; Barma SV; Nasane MP; Gaware SA; Bade BR; Jadkar SR; Funde AM; Dzade NY
    Chem Mater; 2021 Mar; 33(6):1983-1993. PubMed ID: 33840893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revealing the electronic structure, heterojunction band offset and alignment of Cu
    Rondiya SR; Buldu DG; Brammertz G; Jadhav YA; Cross RW; Ghosh HN; Davies TE; Jadkar SR; Dzade NY; Vermang B
    Phys Chem Chem Phys; 2021 Apr; 23(15):9553-9560. PubMed ID: 33885069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural, Optical, Photoelectrochemical, and Electronic Properties of the Photocathode CuS and the Efficient CuS/CdS Heterojunction.
    Shaikh GY; Nilegave DS; Girawale SS; Kore KB; Newaskar SR; Sahu SA; Funde AM
    ACS Omega; 2022 Aug; 7(34):30233-30240. PubMed ID: 36061733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface Structure and Band Alignment of CZTS/CdS Heterojunction: An Experimental and First-Principles DFT Investigation.
    Rondiya S; Jadhav Y; Nasane M; Jadkar S; Dzade NY
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31817306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Au/Cu
    Jadhav YA; Rahane GK; Goswami T; Jagadish K; Chordiya K; Roy A; Debnath T; Jathar SB; Devan R; Upadhyay Kahaly M; Rondiya SR; Ghosh HN; Dzade NY
    ACS Appl Mater Interfaces; 2024 May; 16(17):21746-21756. PubMed ID: 38631911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles insights into the electronic structure, optical and band alignment properties of earth-abundant Cu
    Dzade NY
    Sci Rep; 2021 Feb; 11(1):4755. PubMed ID: 33637815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoelectrochemical (PEC) studies on Cu
    Shelke HD; Lokhande AC; Kim JH; Lokhande CD
    J Colloid Interface Sci; 2017 Nov; 506():144-153. PubMed ID: 28735188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activating a TiO
    Liu C; Chen L; Su X; Chen S; Zhang J; Yang H; Pei Y
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2316-2325. PubMed ID: 34965083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Band Structure Engineering and Defect Passivation of Cu
    Guo H; Yang P; Hu J; Jiang A; Chen H; Niu X; Zhou Y
    ACS Omega; 2022 Mar; 7(11):9642-9651. PubMed ID: 35350365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing WO
    Wang Y; Chen C; Tian W; Xu W; Li L
    Nanotechnology; 2019 Dec; 30(49):495402. PubMed ID: 31476749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ternary Oxide CuWO
    Rosa WS; Rabelo LG; Tiveron Zampaulo LG; Gonçalves RV
    ACS Appl Mater Interfaces; 2022 Jan; ():. PubMed ID: 35021014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional WO
    Wang Y; Tian W; Chen L; Cao F; Guo J; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40235-40243. PubMed ID: 29067799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient all p-type heterojunction photocathodes for photoelectrochemical water splitting.
    Lu X; Liu Z
    Dalton Trans; 2017 Jun; 46(22):7351-7360. PubMed ID: 28548180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoelectrochemical Determination of Cu
    Wang J; Pan Y; Jiang L; Liu M; Liu F; Jia M; Li J; Lai Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37541-37549. PubMed ID: 31550119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Efficient Photoelectrochemical Hydrogen Production Using Nontoxic CuIn
    Kim J; Jang YJ; Baek W; Lee AR; Kim JY; Hyeon T; Lee JS
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):603-610. PubMed ID: 34958547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulse electrodeposition of CuSbS
    Avilez García RG; Cerdán-Pasarán A; Enríquez JP; Mathews NR
    Heliyon; 2024 Feb; 10(3):e24491. PubMed ID: 38318042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the Carrier Transfer Behavior of Coaxial ZnO/ZnS/ZnIn
    Peng J; Liu G; Jiao X; Xia H; Li J; Ma Q; Jin J; Li F
    ChemSusChem; 2022 Dec; 15(23):e202201469. PubMed ID: 36136368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Type-II ZnO/ZnS core-shell nanowires: Earth-abundant photoanode for solar-driven photoelectrochemical water splitting.
    Hassan MA; Johar MA; Waseem A; Bagal IV; Ha JS; Ryu SW
    Opt Express; 2019 Feb; 27(4):A184-A196. PubMed ID: 30876134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and Theoretical Study into Interface Structure and Band Alignment of the Cu
    Rondiya SR; Jadhav Y; Dzade NY; Ahammed R; Goswami T; De Sarkar A; Jadkar S; Haram S; Ghosh HN
    ACS Appl Energy Mater; 2020 Jun; 3(6):5153-5162. PubMed ID: 32905359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exfoliated Molybdenum Disulfide-Wrapped CdS Nanoparticles as a Nano-Heterojunction for Photo-Electrochemical Water Splitting.
    Dolai S; Maiti P; Ghorai A; Bhunia R; Paul PK; Ghosh D
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):438-448. PubMed ID: 33356109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.