These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33841072)

  • 41. On Practical Issues for Stochastic STDP Hardware With 1-bit Synaptic Weights.
    Yousefzadeh A; Stromatias E; Soto M; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2018; 12():665. PubMed ID: 30374283
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A biomimetic neural encoder for spiking neural network.
    Subbulakshmi Radhakrishnan S; Sebastian A; Oberoi A; Das S; Das S
    Nat Commun; 2021 Apr; 12(1):2143. PubMed ID: 33837210
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Magnetic Tunnel Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural Network with On-Chip STDP Learning.
    Srinivasan G; Sengupta A; Roy K
    Sci Rep; 2016 Jul; 6():29545. PubMed ID: 27405788
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spike-Based Approximate Backpropagation Algorithm of Brain-Inspired Deep SNN for Sonar Target Classification.
    Liu Y; Tian M; Liu R; Cao K; Wang R; Wang Y; Zhao W; Zhou Y
    Comput Intell Neurosci; 2022; 2022():1633946. PubMed ID: 36313052
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Tandem Learning Rule for Effective Training and Rapid Inference of Deep Spiking Neural Networks.
    Wu J; Chua Y; Zhang M; Li G; Li H; Tan KC
    IEEE Trans Neural Netw Learn Syst; 2023 Jan; 34(1):446-460. PubMed ID: 34288879
    [TBL] [Abstract][Full Text] [Related]  

  • 48. VTSNN: a virtual temporal spiking neural network.
    Qiu XR; Wang ZR; Luan Z; Zhu RJ; Wu X; Zhang ML; Deng LJ
    Front Neurosci; 2023; 17():1091097. PubMed ID: 37287800
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Backpropagation-Based Learning Techniques for Deep Spiking Neural Networks: A Survey.
    Dampfhoffer M; Mesquida T; Valentian A; Anghel L
    IEEE Trans Neural Netw Learn Syst; 2023 Apr; PP():. PubMed ID: 37027264
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spiking neural networks for handwritten digit recognition-Supervised learning and network optimization.
    Kulkarni SR; Rajendran B
    Neural Netw; 2018 Jul; 103():118-127. PubMed ID: 29674234
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Low-Latency Spiking Neural Networks Using Pre-Charged Membrane Potential and Delayed Evaluation.
    Hwang S; Chang J; Oh MH; Min KK; Jang T; Park K; Yu J; Lee JH; Park BG
    Front Neurosci; 2021; 15():629000. PubMed ID: 33679308
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Indirect and direct training of spiking neural networks for end-to-end control of a lane-keeping vehicle.
    Bing Z; Meschede C; Chen G; Knoll A; Huang K
    Neural Netw; 2020 Jan; 121():21-36. PubMed ID: 31526952
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Heterogeneous Spiking Neural Network for Unsupervised Learning of Spatiotemporal Patterns.
    She X; Dash S; Kim D; Mukhopadhyay S
    Front Neurosci; 2020; 14():615756. PubMed ID: 33519366
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Benchmarking Spike-Based Visual Recognition: A Dataset and Evaluation.
    Liu Q; Pineda-GarcĂ­a G; Stromatias E; Serrano-Gotarredona T; Furber SB
    Front Neurosci; 2016; 10():496. PubMed ID: 27853419
    [TBL] [Abstract][Full Text] [Related]  

  • 55. On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices.
    Kwon D; Lim S; Bae JH; Lee ST; Kim H; Seo YT; Oh S; Kim J; Yeom K; Park BG; Lee JH
    Front Neurosci; 2020; 14():423. PubMed ID: 32733180
    [TBL] [Abstract][Full Text] [Related]  

  • 56. TCJA-SNN: Temporal-Channel Joint Attention for Spiking Neural Networks.
    Zhu RJ; Zhang M; Zhao Q; Deng H; Duan Y; Deng LJ
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; PP():. PubMed ID: 38598397
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimizing the Energy Consumption of Spiking Neural Networks for Neuromorphic Applications.
    Sorbaro M; Liu Q; Bortone M; Sheik S
    Front Neurosci; 2020; 14():662. PubMed ID: 32694978
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-performance deep spiking neural networks via at-most-two-spike exponential coding.
    Chen Y; Feng R; Xiong Z; Xiao J; Liu JK
    Neural Netw; 2024 Aug; 176():106346. PubMed ID: 38713970
    [TBL] [Abstract][Full Text] [Related]  

  • 59. TripleBrain: A Compact Neuromorphic Hardware Core With Fast On-Chip Self-Organizing and Reinforcement Spike-Timing Dependent Plasticity.
    Wang H; He Z; Wang T; He J; Zhou X; Wang Y; Liu L; Wu N; Tian M; Shi C
    IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):636-650. PubMed ID: 35802542
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The impact of encoding-decoding schemes and weight normalization in spiking neural networks.
    Liang Z; Schwartz D; Ditzler G; Koyluoglu OO
    Neural Netw; 2018 Dec; 108():365-378. PubMed ID: 30261415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.