These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33841469)

  • 41. Canopy Nitrogen Concentration Monitoring Techniques of Summer Corn Based on Canopy Spectral Information.
    Liu L; Peng Z; Zhang B; Wei Z; Han N; Lin S; Chen H; Cai J
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31548514
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Hyperspectral estimation models of chlorophyll content in apple leaves].
    Liang S; Zhao GX; Zhu XC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 May; 32(5):1367-70. PubMed ID: 22827091
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine.
    Curran PJ; Dungan JL; Gholz HL
    Tree Physiol; 1990 Dec; 7(1_2_3_4):33-48. PubMed ID: 14972904
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Monitoring of wheat leaf pigment concentration with hyper-spectral remote sensing].
    Feng W; Zhu Y; Yao X; Tian YC; Yao XF; Cao WX
    Ying Yong Sheng Tai Xue Bao; 2008 May; 19(5):992-9. PubMed ID: 18655583
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content.
    Delegido J; Verrelst J; Alonso L; Moreno J
    Sensors (Basel); 2011; 11(7):7063-81. PubMed ID: 22164004
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Fraction of absorbed photosynthetically active radiation over summer maize canopy estimated by hyperspectral remote sensing under different drought conditions.].
    Liu EH; Zhou GS; Zhou L
    Ying Yong Sheng Tai Xue Bao; 2019 Jun; 30(6):2021-2029. PubMed ID: 31257775
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Application of ANFIS in in-situ measured hyperspectral data for vegetation chlorophyll content estimation].
    Yao FQ; Zhang ZH; Yang RY; Sun JW; Wang HJ; Ren SG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jul; 30(7):1834-8. PubMed ID: 20827981
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deriving a light use efficiency estimation algorithm using
    Zhang F; Zhou G
    Ecol Evol; 2017 Jul; 7(13):4735-4744. PubMed ID: 28690803
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Using canopy hyperspectral ratio index to retrieve relative water content of wheat under yellow rust stress].
    Jiang JB; Huang WJ; Chen YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jul; 30(7):1939-43. PubMed ID: 20828004
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simple and robust methods for remote sensing of canopy chlorophyll content: a comparative analysis of hyperspectral data for different types of vegetation.
    Inoue Y; Guérif M; Baret F; Skidmore A; Gitelson A; Schlerf M; Darvishzadeh R; Olioso A
    Plant Cell Environ; 2016 Dec; 39(12):2609-2623. PubMed ID: 27650474
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Performance of optimized hyperspectral reflectance indices and partial least squares regression for estimating the chlorophyll fluorescence and grain yield of wheat grown in simulated saline field conditions.
    El-Hendawy S; Al-Suhaibani N; Elsayed S; Alotaibi M; Hassan W; Schmidhalter U
    Plant Physiol Biochem; 2019 Nov; 144():300-311. PubMed ID: 31605962
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Inversion of vegetation canopy's chlorophyll content based on airborne hyperspectral image].
    Li MZ; Zhao XH; Liu Y; Lu W; Dong S; Meng L
    Ying Yong Sheng Tai Xue Bao; 2013 Jan; 24(1):177-82. PubMed ID: 23718007
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatial Variation of Soil Respiration in a Cropland under Winter Wheat and Summer Maize Rotation in the North China Plain.
    Huang N; Wang L; Hu Y; Tian H; Niu Z
    PLoS One; 2016; 11(12):e0168249. PubMed ID: 27977743
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Exploring novel hyperspectral band and key index for leaf nitrogen accumulation in wheat].
    Yao X; Zhu Y; Feng W; Tian YC; Cao WX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Aug; 29(8):2191-5. PubMed ID: 19839336
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hyperspectral characterization and chlorophyll content inversion of reclaimed vegetation in rare earth mines.
    Li H; Zhou B; Xu F; Wei Z
    Environ Sci Pollut Res Int; 2022 May; 29(24):36839-36853. PubMed ID: 35064880
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A robust vegetation index for remotely assessing chlorophyll content of dorsiventral leaves across several species in different seasons.
    Lu S; Lu F; You W; Wang Z; Liu Y; Omasa K
    Plant Methods; 2018; 14():15. PubMed ID: 29449875
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Study on hyperspectra estimation of pigment contents in canopy leaves of winter wheat under disease stress].
    Jiang JB; Chen YH; Huang WJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jul; 27(7):1363-7. PubMed ID: 17944415
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Use of Hyperspectral Reflectance Sensing for Assessing Growth and Chlorophyll Content of Spring Wheat Grown under Simulated Saline Field Conditions.
    El-Hendawy S; Elsayed S; Al-Suhaibani N; Alotaibi M; Tahir MU; Mubushar M; Attia A; Hassan WM
    Plants (Basel); 2021 Jan; 10(1):. PubMed ID: 33418974
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Migrating from Invasive to Noninvasive Techniques for Enhanced Leaf Chlorophyll Content Estimations Efficiency.
    Kandpal KC; Kumar A
    Crit Rev Anal Chem; 2024; 54(7):2583-2598. PubMed ID: 36995248
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluating sensitivity of hyperspectral indices for estimating mangrove chlorophyll in Middle Andaman Island, India.
    George R; Padalia H; Sinha SK; Kumar AS
    Environ Monit Assess; 2020 Jan; 191(Suppl 3):785. PubMed ID: 31989307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.