These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 33842474)

  • 1. How Malaria Parasites Acquire Nutrients From Their Host.
    Counihan NA; Modak JK; de Koning-Ward TF
    Front Cell Dev Biol; 2021; 9():649184. PubMed ID: 33842474
    [No Abstract]   [Full Text] [Related]  

  • 2. A nutrient-permeable channel on the intraerythrocytic malaria parasite.
    Desai SA
    Novartis Found Symp; 1999; 226():89-95; discussion 95-8. PubMed ID: 10645540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EXP1 is critical for nutrient uptake across the parasitophorous vacuole membrane of malaria parasites.
    Mesén-Ramírez P; Bergmann B; Tran TT; Garten M; Stäcker J; Naranjo-Prado I; Höhn K; Zimmerberg J; Spielmann T
    PLoS Biol; 2019 Sep; 17(9):e3000473. PubMed ID: 31568532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Uninvited Seat at the Dinner Table: How Apicomplexan Parasites Scavenge Nutrients from the Host.
    Piro F; Focaia R; Dou Z; Masci S; Smith D; Di Cristina M
    Microorganisms; 2021 Dec; 9(12):. PubMed ID: 34946193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The parasitophorous vacuole nutrient channel is critical for drug access in malaria parasites and modulates the artemisinin resistance fitness cost.
    Mesén-Ramírez P; Bergmann B; Elhabiri M; Zhu L; von Thien H; Castro-Peña C; Gilberger TW; Davioud-Charvet E; Bozdech Z; Bachmann A; Spielmann T
    Cell Host Microbe; 2021 Dec; 29(12):1774-1787.e9. PubMed ID: 34863371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum.
    Martin RE; Kirk K
    Blood; 2007 Mar; 109(5):2217-24. PubMed ID: 17047158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nutrient-permeable channel on the intraerythrocytic malaria parasite.
    Desai SA; Krogstad DJ; McCleskey EW
    Nature; 1993 Apr; 362(6421):643-6. PubMed ID: 7681937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular transport in malaria-infected erythrocytes.
    Taraschi TF
    Novartis Found Symp; 1999; 226():114-20; discussion 121-5. PubMed ID: 10645542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term live imaging reveals cytosolic immune responses of host hepatocytes against Plasmodium infection and parasite escape mechanisms.
    Prado M; Eickel N; De Niz M; Heitmann A; Agop-Nersesian C; Wacker R; Schmuckli-Maurer J; Caldelari R; Janse CJ; Khan SM; May J; Meyer CG; Heussler VT
    Autophagy; 2015; 11(9):1561-79. PubMed ID: 26208778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the parasitophorous vacuole membrane from Plasmodium chabaudi and implications about its role in the export of parasite proteins.
    Lanners HN; Bafford RA; Wiser MF
    Parasitol Res; 1999 May; 85(5):349-55. PubMed ID: 10227053
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Counihan NA; Chisholm SA; Bullen HE; Srivastava A; Sanders PR; Jonsdottir TK; Weiss GE; Ghosh S; Crabb BS; Creek DJ; Gilson PR; de Koning-Ward TF
    Elife; 2017 Mar; 6():. PubMed ID: 28252383
    [No Abstract]   [Full Text] [Related]  

  • 12. Ion metabolism in malaria-infected erythrocytes.
    Tanabe K
    Blood Cells; 1990; 16(2-3):437-49. PubMed ID: 2175223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CLAG3 Self-Associates in Malaria Parasites and Quantitatively Determines Nutrient Uptake Channels at the Host Membrane.
    Gupta A; Balabaskaran-Nina P; Nguitragool W; Saggu GS; Schureck MA; Desai SA
    mBio; 2018 May; 9(3):. PubMed ID: 29739907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting nutrient uptake mechanisms in Plasmodium.
    Kirk K; Saliba KJ
    Curr Drug Targets; 2007 Jan; 8(1):75-88. PubMed ID: 17266532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial organization of protein export in malaria parasite blood stages.
    Charnaud SC; Jonsdottir TK; Sanders PR; Bullen HE; Dickerman BK; Kouskousis B; Palmer CS; Pietrzak HM; Laumaea AE; Erazo AB; McHugh E; Tilley L; Crabb BS; Gilson PR
    Traffic; 2018 Aug; 19(8):605-623. PubMed ID: 29696751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Host cell remodelling in malaria parasites: a new pool of potential drug targets.
    Gilson PR; Chisholm SA; Crabb BS; de Koning-Ward TF
    Int J Parasitol; 2017 Feb; 47(2-3):119-127. PubMed ID: 27368610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methionine transport in the malaria parasite Plasmodium falciparum.
    Cobbold SA; Martin RE; Kirk K
    Int J Parasitol; 2011 Jan; 41(1):125-35. PubMed ID: 20851123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport properties of the host cell membrane.
    Kirk K; Staines HM; Martin RE; Saliba KJ
    Novartis Found Symp; 1999; 226():55-66; discussion 66-73. PubMed ID: 10645538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of trafficking pathways and membrane genesis in malaria-infected erythrocytes.
    Pouvelle B; Gormley JA; Taraschi TF
    Mol Biochem Parasitol; 1994 Jul; 66(1):83-96. PubMed ID: 7984190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport pathways in the malaria-infected erythrocyte. Their characterization and their use as potential targets for chemotherapy.
    Ginsburg H
    Biochem Pharmacol; 1994 Nov; 48(10):1847-56. PubMed ID: 7986195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.