These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 33842835)
1. Neuroendocrine cells of the prostate: Histology, biological functions, and molecular mechanisms. Butler W; Huang J Precis Clin Med; 2021 Mar; 4(1):25-34. PubMed ID: 33842835 [TBL] [Abstract][Full Text] [Related]
2. Neuroendocrine cells of prostate cancer: biologic functions and molecular mechanisms. Huang YH; Zhang YQ; Huang JT Asian J Androl; 2019; 21(3):291-295. PubMed ID: 30924452 [TBL] [Abstract][Full Text] [Related]
3. Molecular model for neuroendocrine prostate cancer progression. Chen R; Dong X; Gleave M BJU Int; 2018 Oct; 122(4):560-570. PubMed ID: 29569310 [TBL] [Abstract][Full Text] [Related]
4. Oncofetal protein glypican-3 is a biomarker and critical regulator of function for neuroendocrine cells in prostate cancer. Butler W; Xu L; Zhou Y; Cheng Q; Hauck JS; He Y; Marek R; Hartman Z; Cheng L; Yang Q; Wang ME; Chen M; Zhang H; Armstrong AJ; Huang J J Pathol; 2023 May; 260(1):43-55. PubMed ID: 36752189 [TBL] [Abstract][Full Text] [Related]
5. A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Masumori N; Thomas TZ; Chaurand P; Case T; Paul M; Kasper S; Caprioli RM; Tsukamoto T; Shappell SB; Matusik RJ Cancer Res; 2001 Mar; 61(5):2239-49. PubMed ID: 11280793 [TBL] [Abstract][Full Text] [Related]
6. Function and molecular mechanisms of neuroendocrine cells in prostate cancer. Huang J; Wu C; di Sant'Agnese PA; Yao JL; Cheng L; Na Y Anal Quant Cytol Histol; 2007 Jun; 29(3):128-38. PubMed ID: 17672372 [TBL] [Abstract][Full Text] [Related]
7. Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Yuan TC; Veeramani S; Lin MF Endocr Relat Cancer; 2007 Sep; 14(3):531-47. PubMed ID: 17914087 [TBL] [Abstract][Full Text] [Related]
8. More advantages in detecting bone and soft tissue metastases from prostate cancer using Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003 [TBL] [Abstract][Full Text] [Related]
9. Neuroendocrine differentiation in prostate carcinoma: focusing on its pathophysiologic mechanisms and pathological features. Alberti C G Chir; 2010; 31(11-12):568-74. PubMed ID: 21232206 [TBL] [Abstract][Full Text] [Related]
10. [Neuroendocrine differentiation in prostate cancer. An unrecognized and therapy-resistant phenotype]. Bonkhoff H; Fixemer T Urologe A; 2004 Jul; 43(7):836-42. PubMed ID: 15048555 [TBL] [Abstract][Full Text] [Related]
12. Development of Neuroendocrine Prostate Cancers by the Ser/Arg Repetitive Matrix 4-Mediated RNA Splicing Network. Lee AR; Che N; Lovnicki JM; Dong X Front Oncol; 2018; 8():93. PubMed ID: 29666783 [TBL] [Abstract][Full Text] [Related]
13. Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression. Patel N; Itakura T; Jeong S; Liao CP; Roy-Burman P; Zandi E; Groshen S; Pinski J; Coetzee GA; Gross ME; Fini ME PLoS One; 2015; 10(2):e0117758. PubMed ID: 25693195 [TBL] [Abstract][Full Text] [Related]
14. Development of a Transcriptional Amplification System Based on the PEG3 Promoter to Target Androgen Receptor-Positive and -Negative Prostate Cancer Cells. Jain P; Clermont PL; Desmeules F; Zoubeidi A; Neveu B; Pouliot F Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30626088 [TBL] [Abstract][Full Text] [Related]
15. Neuroendocrine differentiation in prostate cancer. Sun Y; Niu J; Huang J Am J Transl Res; 2009 Feb; 1(2):148-62. PubMed ID: 19956427 [TBL] [Abstract][Full Text] [Related]
16. Secretogranin II is overexpressed in advanced prostate cancer and promotes the neuroendocrine differentiation of prostate cancer cells. Courel M; El Yamani FZ; Alexandre D; El Fatemi H; Delestre C; Montero-Hadjadje M; Tazi F; Amarti A; Magoul R; Chartrel N; Anouar Y Eur J Cancer; 2014 Nov; 50(17):3039-49. PubMed ID: 25307750 [TBL] [Abstract][Full Text] [Related]
17. Foxa2 activates the transcription of androgen receptor target genes in castrate resistant prostatic tumors. Connelly ZM; Yang S; Chen F; Yeh Y; Khater N; Jin R; Matusik R; Yu X Am J Clin Exp Urol; 2018; 6(5):172-181. PubMed ID: 30510969 [TBL] [Abstract][Full Text] [Related]
18. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Shafi AA; Yen AE; Weigel NL Pharmacol Ther; 2013 Dec; 140(3):223-38. PubMed ID: 23859952 [TBL] [Abstract][Full Text] [Related]
19. NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Jin RJ; Wang Y; Masumori N; Ishii K; Tsukamoto T; Shappell SB; Hayward SW; Kasper S; Matusik RJ Cancer Res; 2004 Aug; 64(15):5489-95. PubMed ID: 15289359 [TBL] [Abstract][Full Text] [Related]
20. Induction of Neuroendocrine Differentiation in Prostate Cancer Cells by Dovitinib (TKI-258) and its Therapeutic Implications. Yadav SS; Li J; Stockert JA; Herzog B; O'Connor J; Garzon-Manco L; Parsons R; Tewari AK; Yadav KK Transl Oncol; 2017 Jun; 10(3):357-366. PubMed ID: 28342996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]