BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33842890)

  • 1. Integrating Eye Tracking and Speech Recognition Accurately Annotates MR Brain Images for Deep Learning: Proof of Principle.
    Stember JN; Celik H; Gutman D; Swinburne N; Young R; Eskreis-Winkler S; Holodny A; Jambawalikar S; Wood BJ; Chang PD; Krupinski E; Bagci U
    Radiol Artif Intell; 2021 Jan; 3(1):e200047. PubMed ID: 33842890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforcement learning using Deep [Formula: see text] networks and [Formula: see text] learning accurately localizes brain tumors on MRI with very small training sets.
    Stember JN; Shalu H
    BMC Med Imaging; 2022 Dec; 22(1):224. PubMed ID: 36564724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy.
    Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC
    Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of Simulated Postcontrast MRI of Glioblastomas and Lower-Grade Gliomas by Using Three-dimensional Fully Convolutional Neural Networks.
    Calabrese E; Rudie JD; Rauschecker AM; Villanueva-Meyer JE; Cha S
    Radiol Artif Intell; 2021 Sep; 3(5):e200276. PubMed ID: 34617027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm.
    Wu W; Li D; Du J; Gao X; Gu W; Zhao F; Feng X; Yan H
    Comput Math Methods Med; 2020; 2020():6789306. PubMed ID: 32733596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bridging the gap between prostate radiology and pathology through machine learning.
    Bhattacharya I; Lim DS; Aung HL; Liu X; Seetharaman A; Kunder CA; Shao W; Soerensen SJC; Fan RE; Ghanouni P; To'o KJ; Brooks JD; Sonn GA; Rusu M
    Med Phys; 2022 Aug; 49(8):5160-5181. PubMed ID: 35633505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI-based Identification and Classification of Major Intracranial Tumor Types by Using a 3D Convolutional Neural Network: A Retrospective Multi-institutional Analysis.
    Chakrabarty S; Sotiras A; Milchenko M; LaMontagne P; Hileman M; Marcus D
    Radiol Artif Intell; 2021 Sep; 3(5):e200301. PubMed ID: 34617029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Reinforcement Learning with Automated Label Extraction from Clinical Reports Accurately Classifies 3D MRI Brain Volumes.
    Stember JN; Shalu H
    J Digit Imaging; 2022 Oct; 35(5):1143-1152. PubMed ID: 35562633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-based dominant index lesion segmentation for MR-guided radiation therapy of prostate cancer.
    Simeth J; Jiang J; Nosov A; Wibmer A; Zelefsky M; Tyagi N; Veeraraghavan H
    Med Phys; 2023 Aug; 50(8):4854-4870. PubMed ID: 36856092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks.
    Sujit SJ; Coronado I; Kamali A; Narayana PA; Gabr RE
    J Magn Reson Imaging; 2019 Oct; 50(4):1260-1267. PubMed ID: 30811739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI.
    Hallinan JTPD; Zhu L; Yang K; Makmur A; Algazwi DAR; Thian YL; Lau S; Choo YS; Eide SE; Yap QV; Chan YH; Tan JH; Kumar N; Ooi BC; Yoshioka H; Quek ST
    Radiology; 2021 Jul; 300(1):130-138. PubMed ID: 33973835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LEARNING TO DETECT BRAIN LESIONS FROM NOISY ANNOTATIONS.
    Karimi D; Peters JM; Ouaalam A; Prabhu SP; Sahin M; Krueger DA; Kolevzon A; Eng C; Warfield SK; Gholipour A
    Proc IEEE Int Symp Biomed Imaging; 2020 Apr; 2020():1910-1914. PubMed ID: 32879655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eye Tracking for Deep Learning Segmentation Using Convolutional Neural Networks.
    Stember JN; Celik H; Krupinski E; Chang PD; Mutasa S; Wood BJ; Lignelli A; Moonis G; Schwartz LH; Jambawalikar S; Bagci U
    J Digit Imaging; 2019 Aug; 32(4):597-604. PubMed ID: 31044392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning fuzzy clustering for SPECT/CT segmentation via convolutional neural networks.
    Chen J; Li Y; Luna LP; Chung HW; Rowe SP; Du Y; Solnes LB; Frey EC
    Med Phys; 2021 Jul; 48(7):3860-3877. PubMed ID: 33905560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-path 2.5 dimensional convolutional neural network system for segmenting stroke lesions in brain MRI images.
    Xue Y; Farhat FG; Boukrina O; Barrett AM; Binder JR; Roshan UW; Graves WW
    Neuroimage Clin; 2020; 25():102118. PubMed ID: 31865021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features.
    Wang CJ; Hamm CA; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Weinreb JC; Duncan JS; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3348-3357. PubMed ID: 31093705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis.
    Salem M; Valverde S; Cabezas M; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X
    Neuroimage Clin; 2020; 25():102149. PubMed ID: 31918065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic segmentation of prostate cancer metastases in PSMA PET/CT images using deep neural networks with weighted batch-wise dice loss.
    Xu Y; Klyuzhin I; Harsini S; Ortiz A; Zhang S; Bénard F; Dodhia R; Uribe CF; Rahmim A; Lavista Ferres J
    Comput Biol Med; 2023 May; 158():106882. PubMed ID: 37037147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms.
    Grimm F; Edl F; Kerscher SR; Nieselt K; Gugel I; Schuhmann MU
    Acta Neurochir (Wien); 2020 Oct; 162(10):2463-2474. PubMed ID: 32583085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepHeartCT: A fully automatic artificial intelligence hybrid framework based on convolutional neural network and multi-atlas segmentation for multi-structure cardiac computed tomography angiography image segmentation.
    Bui V; Hsu LY; Chang LC; Sun AY; Tran L; Shanbhag SM; Zhou W; Mehta NN; Chen MY
    Front Artif Intell; 2022; 5():1059007. PubMed ID: 36483981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.