These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 33843368)

  • 1. The fire risk of portable batteries in their end-of-life: Investigation of the state of charge of waste lithium-ion batteries in Austria.
    Nigl T; Bäck T; Stuhlpfarrer S; Pomberger R
    Waste Manag Res; 2021 Sep; 39(9):1193-1199. PubMed ID: 33843368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation and material flow analysis of end-of-life portable batteries and lithium-based batteries in different waste streams in Austria.
    Nigl T; Schwarz TE; Walch C; Baldauf M; Rutrecht B; Pomberger R
    Waste Manag Res; 2020 Jun; 38(6):649-659. PubMed ID: 32471340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Gas Analysis and Fire Characterization of Lithium-Ion Cells During Thermal Runaway Using an Environmental Chamber.
    Kwon B; Cui W; Sharma A; Liao YT; Takahashi F; Juarez-Robles D; Parhizi M; Jeevarajan J
    J Vis Exp; 2023 Mar; (193):. PubMed ID: 37067273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium battery fires: implications for air medical transport.
    Thomas F; Mills G; Howe R; Zobell J
    Air Med J; 2012; 31(5):242-8. PubMed ID: 22938956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery.
    Liu J; Wang Z; Gong J; Liu K; Wang H; Guo L
    Materials (Basel); 2017 Feb; 10(3):. PubMed ID: 28772588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fire Tests on E-vehicle Battery Cells and Packs.
    Sturk D; Hoffmann L; Ahlberg Tidblad A
    Traffic Inj Prev; 2015; 16 Suppl 1():S159-64. PubMed ID: 25714114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired Thermal Runaway Retardant Capsules for Improved Safety and Electrochemical Performance in Lithium-Ion Batteries.
    Gao Z; Rao S; Zhang T; Gao F; Xiao Y; Shali L; Wang X; Zheng Y; Chen Y; Zong Y; Li W; Chen Y
    Adv Sci (Weinh); 2022 Feb; 9(5):e2103796. PubMed ID: 34923778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Dependence of the Burning Process and Ignition Temperature of a Lithium Cell on Its State of Charge.
    Erd A; Ciszewski T
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State-of-Charge Estimation for Lithium-Ion Batteries Using Residual Convolutional Neural Networks.
    Wang YC; Shao NC; Chen GW; Hsu WS; Wu SC
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal-Responsive and Fire-Resistant Materials for High-Safety Lithium-Ion Batteries.
    Li H; Wang H; Xu Z; Wang K; Ge M; Gan L; Zhang Y; Tang Y; Chen S
    Small; 2021 Oct; 17(43):e2103679. PubMed ID: 34580989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the electrical-thermal properties of lithium-ion battery materials in the NCM622/graphite system.
    Li H; Wu X; Fang S; Liu M; Bi S; Zhao T; Zhang X
    Front Chem; 2024; 12():1403696. PubMed ID: 38680457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of Online State of Charge and State of Health Based on Neural Network Model Banks Using Lithium Batteries.
    Lee JH; Lee IS
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods.
    Wang Z; Yang H; Li Y; Wang G; Wang J
    J Hazard Mater; 2019 Nov; 379():120730. PubMed ID: 31252342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Economic and environmental characterization of an evolving Li-ion battery waste stream.
    Wang X; Gaustad G; Babbitt CW; Bailey C; Ganter MJ; Landi BJ
    J Environ Manage; 2014 Mar; 135():126-34. PubMed ID: 24531384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review on Lithium-Ion Battery Separators towards Enhanced Safety Performances and Modelling Approaches.
    Li A; Yuen ACY; Wang W; De Cachinho Cordeiro IM; Wang C; Chen TBY; Zhang J; Chan QN; Yeoh GH
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33477513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fire boundaries of lithium-ion cell eruption gases caused by thermal runaway.
    Li W; Rao S; Xiao Y; Gao Z; Chen Y; Wang H; Ouyang M
    iScience; 2021 May; 24(5):102401. PubMed ID: 33997686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental analysis and safety assessment of thermal runaway behavior in lithium iron phosphate batteries under mechanical abuse.
    Chai Z; Li J; Liu Z; Liu Z; Jin X
    Sci Rep; 2024 Apr; 14(1):8673. PubMed ID: 38622171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Fusion Method for State-of-Charge Estimation of Lithium-Ion Batteries Based on Improved Genetic Algorithm BP and Adaptive Extended Kalman Filter.
    Cao L; Shao C; Zhang Z; Cao S
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel causative factor of injury: Severe burns related to fires and explosions of lithium-ion batteries of electric motorcycles.
    Hu XH; Yu L; Chen Z; Yu B; Ma CH; Hou YS; Hu YG; Zhao PL; Zheng JF; Zhao XC; Cheng L; Zhang HJ; Li M; Yin K; Dai Q; Cao TY; Du WL; Shen YM
    Injury; 2024 Jul; ():111724. PubMed ID: 39054232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device.
    Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y
    Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.