These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 33843991)
1. Structures of an engineered phospholipase D with specificity for secondary alcohol transphosphatidylation: insights into plasticity of substrate binding and activation. Samantha A; Damnjanović J; Iwasaki Y; Nakano H; Vrielink A Biochem J; 2021 May; 478(9):1749-1767. PubMed ID: 33843991 [TBL] [Abstract][Full Text] [Related]
2. Directing positional specificity in enzymatic synthesis of bioactive 1-phosphatidylinositol by protein engineering of a phospholipase D. Damnjanović J; Kuroiwa C; Tanaka H; Ishida K; Nakano H; Iwasaki Y Biotechnol Bioeng; 2016 Jan; 113(1):62-71. PubMed ID: 26154602 [TBL] [Abstract][Full Text] [Related]
3. Streptomyces phospholipase D mutants with altered substrate specificity capable of phosphatidylinositol synthesis. Masayama A; Takahashi T; Tsukada K; Nishikawa S; Takahashi R; Adachi M; Koga K; Suzuki A; Yamane T; Nakano H; Iwasaki Y Chembiochem; 2008 Apr; 9(6):974-81. PubMed ID: 18338352 [TBL] [Abstract][Full Text] [Related]
4. Deletion of a dynamic surface loop improves stability and changes kinetic behavior of phosphatidylinositol-synthesizing Streptomyces phospholipase D. Damnjanović J; Nakano H; Iwasaki Y Biotechnol Bioeng; 2014 Apr; 111(4):674-82. PubMed ID: 24222582 [TBL] [Abstract][Full Text] [Related]
5. Crystal structures of carboxypeptidase T complexes with transition-state analogs. Akparov VK; Timofeev VI; Khaliullin IG; Švedas V; Kuranova IP; Rakitina TV J Biomol Struct Dyn; 2018 Nov; 36(15):3958-3966. PubMed ID: 29129130 [No Abstract] [Full Text] [Related]
6. Synthesis of phosphatidylinositols having various inositol stereoisomers by engineered phospholipase D. Ozaki A; Masayama A; Nakano H; Iwasaki Y J Biosci Bioeng; 2010 Apr; 109(4):337-40. PubMed ID: 20226373 [TBL] [Abstract][Full Text] [Related]
7. Acyl Chain Specificity of Marine Hu R; Cui R; Lan D; Wang F; Wang Y Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638918 [TBL] [Abstract][Full Text] [Related]
8. Biochemical and crystallographic investigations into isonitrile formation by a nonheme iron-dependent oxidase/decarboxylase. Jonnalagadda R; Del Rio Flores A; Cai W; Mehmood R; Narayanamoorthy M; Ren C; Zaragoza JPT; Kulik HJ; Zhang W; Drennan CL J Biol Chem; 2021; 296():100231. PubMed ID: 33361191 [TBL] [Abstract][Full Text] [Related]
9. Acyl chain that matters: introducing sn-2 acyl chain preference to a phospholipase D by protein engineering. Damnjanović J; Nakano H; Iwasaki Y Protein Eng Des Sel; 2019 Sep; 32(1):1-11. PubMed ID: 31396631 [TBL] [Abstract][Full Text] [Related]
10. Structural insights into the mechanism of the drastic changes in enzymatic activity of the cytochrome P450 vitamin D Yasutake Y; Kameda T; Tamura T Acta Crystallogr F Struct Biol Commun; 2017 May; 73(Pt 5):266-275. PubMed ID: 28471358 [TBL] [Abstract][Full Text] [Related]
11. Structure of a lipid A phosphoethanolamine transferase suggests how conformational changes govern substrate binding. Anandan A; Evans GL; Condic-Jurkic K; O'Mara ML; John CM; Phillips NJ; Jarvis GA; Wills SS; Stubbs KA; Moraes I; Kahler CM; Vrielink A Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2218-2223. PubMed ID: 28193899 [TBL] [Abstract][Full Text] [Related]
12. Reverse protein engineering of a novel 4-domain copper nitrite reductase reveals functional regulation by protein-protein interaction. Sasaki D; Watanabe TF; Eady RR; Garratt RC; Antonyuk SV; Hasnain SS FEBS J; 2021 Jan; 288(1):262-280. PubMed ID: 32255260 [TBL] [Abstract][Full Text] [Related]
13. Structure of an ancestral ADP-dependent kinase with fructose-6P reveals key residues for binding, catalysis, and ligand-induced conformational changes. Muñoz SM; Castro-Fernandez V; Guixé V J Biol Chem; 2021; 296():100219. PubMed ID: 33839685 [TBL] [Abstract][Full Text] [Related]
14. Crystal structures of aminotransferases Aro8 and Aro9 from Candida albicans and structural insights into their properties. Kiliszek A; Rypniewski W; Rząd K; Milewski S; Gabriel I J Struct Biol; 2019 Mar; 205(3):26-33. PubMed ID: 30742897 [TBL] [Abstract][Full Text] [Related]
15. Phospholipase D as a catalyst: application in phospholipid synthesis, molecular structure and protein engineering. Damnjanović J; Iwasaki Y J Biosci Bioeng; 2013 Sep; 116(3):271-80. PubMed ID: 23639419 [TBL] [Abstract][Full Text] [Related]
16. Structural and biochemical characterization of the catalytic domains of GdpP reveals a unified hydrolysis mechanism for the DHH/DHHA1 phosphodiesterase. Wang F; He Q; Su K; Wei T; Xu S; Gu L Biochem J; 2018 Jan; 475(1):191-205. PubMed ID: 29203646 [TBL] [Abstract][Full Text] [Related]
17. Isolation of phospholipase D mutants having phosphatidylinositol-synthesizing activity with positional specificity on myo-inositol. Masayama A; Tsukada K; Ikeda C; Nakano H; Iwasaki Y Chembiochem; 2009 Feb; 10(3):559-64. PubMed ID: 19123198 [TBL] [Abstract][Full Text] [Related]
18. Location of the catalytic nucleophile of phospholipase D of Streptomyces antibioticus in the C-terminal half domain. Iwasaki Y; Horiike S; Matsushima K; Yamane T Eur J Biochem; 1999 Sep; 264(2):577-81. PubMed ID: 10491106 [TBL] [Abstract][Full Text] [Related]
20. Structural and biochemical analyses of β-N-acetylhexosaminidase Am0868 from Akkermansia muciniphila involved in mucin degradation. Xu W; Yang W; Wang Y; Wang M; Zhang M Biochem Biophys Res Commun; 2020 Sep; 529(4):876-881. PubMed ID: 32819592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]