These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 33844068)
1. Using biotechnological approaches to develop crop resistance to root parasitic weeds. Aly R; Matzrafi M; Bari VK Planta; 2021 Apr; 253(5):97. PubMed ID: 33844068 [TBL] [Abstract][Full Text] [Related]
2. CRISPR/Cas9 mediated mutagenesis of MORE AXILLARY GROWTH 1 in tomato confers resistance to root parasitic weed Phelipanche aegyptiaca. Bari VK; Nassar JA; Aly R Sci Rep; 2021 Feb; 11(1):3905. PubMed ID: 33594101 [TBL] [Abstract][Full Text] [Related]
3. Targeted mutagenesis of two homologous ATP-binding cassette subfamily G (ABCG) genes in tomato confers resistance to parasitic weed Phelipanche aegyptiaca. Bari VK; Nassar JA; Meir A; Aly R J Plant Res; 2021 May; 134(3):585-597. PubMed ID: 33704586 [TBL] [Abstract][Full Text] [Related]
4. CRISPR/Cas9-mediated mutagenesis of CAROTENOID CLEAVAGE DIOXYGENASE 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca. Bari VK; Nassar JA; Kheredin SM; Gal-On A; Ron M; Britt A; Steele D; Yoder J; Aly R Sci Rep; 2019 Aug; 9(1):11438. PubMed ID: 31391538 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in the regulation of root parasitic weed damage by strigolactone-related chemicals. Ito S Biosci Biotechnol Biochem; 2023 Feb; 87(3):247-255. PubMed ID: 36610999 [TBL] [Abstract][Full Text] [Related]
6. Silencing of a mannitol transport gene in Bari VK; Singh D; Nassar JA; Aly R Plant Signal Behav; 2022 Dec; 17(1):2139115. PubMed ID: 36420997 [TBL] [Abstract][Full Text] [Related]
7. The Effect of Virulence and Resistance Mechanisms on the Interactions between Parasitic Plants and Their Hosts. Hu L; Wang J; Yang C; Islam F; Bouwmeester HJ; Muños S; Zhou W Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260931 [TBL] [Abstract][Full Text] [Related]
9. Characterization of Peralta AC; Soriano G; Zorrilla JG; Masi M; Cimmino A; Fernández-Aparicio M Molecules; 2022 Nov; 27(21):. PubMed ID: 36364247 [TBL] [Abstract][Full Text] [Related]
10. Control of Egyptian Broomrape in Processing Tomato: A Summary of 20 Years of Research and Successful Implementation. Eizenberg H; Goldwasser Y Plant Dis; 2018 Aug; 102(8):1477-1488. PubMed ID: 30673429 [TBL] [Abstract][Full Text] [Related]
11. Low strigolactone root exudation: a novel mechanism of broomrape (Orobanche and Phelipanche spp.) resistance available for faba bean breeding. Fernández-Aparicio M; Kisugi T; Xie X; Rubiales D; Yoneyama K J Agric Food Chem; 2014 Jul; 62(29):7063-71. PubMed ID: 24974726 [TBL] [Abstract][Full Text] [Related]
12. Cucumber Mosaic Virus as a carotenoid inhibitor reducing Phelipanche aegyptiaca infection in tobacco plants. Ibdah M; Dubey NK; Eizenberg H; Dabour Z; Abu-Nassar J; Gal-On A; Aly R Plant Signal Behav; 2014; 9(10):e972146. PubMed ID: 25482816 [TBL] [Abstract][Full Text] [Related]
13. Ryecyanatines A and B and ryecarbonitrilines A and B, substituted cyanatophenol, cyanatobenzo[1,3]dioxole, and benzo[1,3]dioxolecarbonitriles from rye (Secale cereale L.) root exudates: Novel metabolites with allelopathic activity on Orobanche seed germination and radicle growth. Cimmino A; Fernández-Aparicio M; Avolio F; Yoneyama K; Rubiales D; Evidente A Phytochemistry; 2015 Jan; 109():57-65. PubMed ID: 25468713 [TBL] [Abstract][Full Text] [Related]
14. The mechanism of host-induced germination in root parasitic plants. Nelson DC Plant Physiol; 2021 Apr; 185(4):1353-1373. PubMed ID: 33793958 [TBL] [Abstract][Full Text] [Related]
15. Strigolactones: ecological significance and use as a target for parasitic plant control. López-Ráez JA; Matusova R; Cardoso C; Jamil M; Charnikhova T; Kohlen W; Ruyter-Spira C; Verstappen F; Bouwmeester H Pest Manag Sci; 2009 May; 65(5):471-7. PubMed ID: 19115242 [TBL] [Abstract][Full Text] [Related]
16. Genetic and physiological characterization of sunflower resistance provided by the wild-derived Or Fernández-Aparicio M; Del Moral L; Muños S; Velasco L; Pérez-Vich B Theor Appl Genet; 2022 Feb; 135(2):501-525. PubMed ID: 34741641 [TBL] [Abstract][Full Text] [Related]
17. Induction of Haustorium Development by Sphaeropsidones in Radicles of the Parasitic Weeds Striga and Orobanche. A Structure-Activity Relationship Study. Fernández-Aparicio M; Masi M; Maddau L; Cimmino A; Evidente M; Rubiales D; Evidente A J Agric Food Chem; 2016 Jun; 64(25):5188-96. PubMed ID: 27267731 [TBL] [Abstract][Full Text] [Related]
18. Broomrape Weeds. Underground Mechanisms of Parasitism and Associated Strategies for their Control: A Review. Fernández-Aparicio M; Reboud X; Gibot-Leclerc S Front Plant Sci; 2016; 7():135. PubMed ID: 26925071 [TBL] [Abstract][Full Text] [Related]
19. Emerging technologies for the chemical control of root parasitic weeds. Kawada K; Koyama T; Takahashi I; Nakamura H; Asami T J Pestic Sci; 2022 Aug; 47(3):101-110. PubMed ID: 36479457 [TBL] [Abstract][Full Text] [Related]
20. Gene silencing of mannose 6-phosphate reductase in the parasitic weed Orobanche aegyptiaca through the production of homologous dsRNA sequences in the host plant. Aly R; Cholakh H; Joel DM; Leibman D; Steinitz B; Zelcer A; Naglis A; Yarden O; Gal-On A Plant Biotechnol J; 2009 Aug; 7(6):487-98. PubMed ID: 19490480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]