These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 33844502)

  • 1. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting.
    Tong X; Liu S; Crittenden J; Chen Y
    ACS Nano; 2021 Apr; 15(4):5838-5860. PubMed ID: 33844502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power.
    Xin W; Jiang L; Wen L
    Acc Chem Res; 2021 Nov; 54(22):4154-4165. PubMed ID: 34719227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniaturized Salinity Gradient Energy Harvesting Devices.
    Hsu WS; Preet A; Lin TY; Lin TE
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34576940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric Nanoporous Alumina Membranes for Nanofluidic Osmotic Energy Conversion.
    Zhang Y; Wang H; Wang J; Li L; Sun H; Wang C
    Chem Asian J; 2023 Dec; 18(23):e202300876. PubMed ID: 37886875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects.
    Yip NY; Brogioli D; Hamelers HV; Nijmeijer K
    Environ Sci Technol; 2016 Nov; 50(22):12072-12094. PubMed ID: 27718544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation.
    Jia P; Du X; Chen R; Zhou J; Agostini M; Sun J; Xiao L
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis.
    Ouyang W; Wang W; Zhang H; Wu W; Li Z
    Nanotechnology; 2013 Aug; 24(34):345401. PubMed ID: 23899953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis.
    Wang S; Sun Z; Ahmad M; Fu W; Gao Z
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126608. PubMed ID: 37652325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance ionic diode membrane for salinity gradient power generation.
    Gao J; Guo W; Feng D; Wang H; Zhao D; Jiang L
    J Am Chem Soc; 2014 Sep; 136(35):12265-72. PubMed ID: 25137214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial nanocellulose membrane with opposite surface charges for large-scale and large-area osmotic energy harvesting and ion transport.
    Zhang K; Wu H; Zhang X; Dong H; Chen S; Xu Y; Xu F
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129461. PubMed ID: 38237827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.
    Yip NY; Vermaas DA; Nijmeijer K; Elimelech M
    Environ Sci Technol; 2014 May; 48(9):4925-36. PubMed ID: 24697542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressible Ionized Natural 3D Interconnected Loofah Membrane for Salinity Gradient Power Generation.
    Luan P; Zhao Y; Li Q; Cao D; Wang Y; Sun X; Liu C; Zhu H
    Small; 2022 Jan; 18(2):e2104320. PubMed ID: 34747120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harvesting Blue Energy Based on Salinity and Temperature Gradient: Challenges, Solutions, and Opportunities.
    Rastgar M; Moradi K; Burroughs C; Hemmati A; Hoek E; Sadrzadeh M
    Chem Rev; 2023 Aug; 123(16):10156-10205. PubMed ID: 37523591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in Two-Dimensional Ion-Selective Membranes: Bridging Nanoscale Insights to Industrial-Scale Salinity Gradient Energy Harvesting.
    Ma X; Neek-Amal M; Sun C
    ACS Nano; 2024 May; 18(20):12610-12638. PubMed ID: 38733357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-Inspired Salinity-Gradient Power Generation With UiO-66-NH
    Yao L; Li Q; Pan S; Cheng J; Liu X
    Front Bioeng Biotechnol; 2022; 10():901507. PubMed ID: 35528210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membranes for Osmotic Power Generation by Reverse Electrodialysis.
    Rahman MM
    Membranes (Basel); 2023 Jan; 13(2):. PubMed ID: 36837667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Dimensional Ti
    Hong S; Ming F; Shi Y; Li R; Kim IS; Tang CY; Alshareef HN; Wang P
    ACS Nano; 2019 Aug; 13(8):8917-8925. PubMed ID: 31305989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic thermal up-diffusion in nanofluidic salinity-gradient energy harvesting.
    Long R; Kuang Z; Liu Z; Liu W
    Natl Sci Rev; 2019 Nov; 6(6):1266-1273. PubMed ID: 34692004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing Nanofluidic Energy Harvesting in Synthetic Clay-based Membranes by Annealing Treatment.
    Zavala-Galindo Y; Yang G; Zang H; Lei W; Liu D
    Adv Sci (Weinh); 2024 Aug; 11(31):e2400233. PubMed ID: 38885420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.