These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 33844828)
1. Racial Differences in the Rate of Change in Anterior Lamina Cribrosa Surface Depth in the African Descent and Glaucoma Evaluation Study. Girkin CA; Belghith A; Bowd C; Medeiros FA; Weinreb RN; Liebmann JM; Proudfoot JA; Zangwill LM; Fazio MA Invest Ophthalmol Vis Sci; 2021 Apr; 62(4):12. PubMed ID: 33844828 [TBL] [Abstract][Full Text] [Related]
2. Racial Differences in the Association of Anterior Lamina Cribrosa Surface Depth and Glaucoma Severity in the African Descent and Glaucoma Evaluation Study (ADAGES). Girkin CA; Fazio MA; Bowd C; Medeiros FA; Weinreb RN; Liebmann JM; Proudfoot J; Zangwill LM; Belghith A Invest Ophthalmol Vis Sci; 2019 Oct; 60(13):4496-4502. PubMed ID: 31661550 [TBL] [Abstract][Full Text] [Related]
3. Optic Nerve Head Deformation in Glaucoma: A Prospective Analysis of Optic Nerve Head Surface and Lamina Cribrosa Surface Displacement. Wu Z; Xu G; Weinreb RN; Yu M; Leung CK Ophthalmology; 2015 Jul; 122(7):1317-29. PubMed ID: 25972259 [TBL] [Abstract][Full Text] [Related]
4. Lamina cribrosa position and Bruch's membrane opening differences between anterior ischemic optic neuropathy and open-angle glaucoma. Rebolleda G; Pérez-Sarriegui A; Díez-Álvarez L; De Juan V; Muñoz-Negrete FJ Eur J Ophthalmol; 2019 Mar; 29(2):202-209. PubMed ID: 29911429 [TBL] [Abstract][Full Text] [Related]
5. Anterior lamina cribrosa surface depth, age, and visual field sensitivity in the Portland Progression Project. Ren R; Yang H; Gardiner SK; Fortune B; Hardin C; Demirel S; Burgoyne CF Invest Ophthalmol Vis Sci; 2014 Mar; 55(3):1531-9. PubMed ID: 24474264 [TBL] [Abstract][Full Text] [Related]
6. Effect of Trabeculectomy on OCT Measurements of the Optic Nerve Head Neuroretinal Rim Tissue. Sanchez FG; Sanders DS; Moon JJ; Gardiner SK; Reynaud J; Fortune B; Mansberger SL Ophthalmol Glaucoma; 2020; 3(1):32-39. PubMed ID: 32632405 [TBL] [Abstract][Full Text] [Related]
7. Measurement of Structural Parameters of the Lamina Cribrosa in Primary Open-Angle Glaucoma and Chronic Primary Angle-Closure Glaucoma by Optical Coherence Tomography and Its Correlations with Ocular Parameters. Hao L; Xiao H; Gao X; Xu X; Liu X Ophthalmic Res; 2019; 62(1):36-45. PubMed ID: 30783031 [TBL] [Abstract][Full Text] [Related]
8. Neuroretinal rim response to transient changes in intraocular pressure in healthy non-human primate eyes. Pardon LP; Harwerth RS; Patel NB Exp Eye Res; 2020 Apr; 193():107978. PubMed ID: 32081667 [TBL] [Abstract][Full Text] [Related]
9. In Vivo Detection of Laminar and Peripapillary Scleral Hypercompliance in Early Monkey Experimental Glaucoma. Ivers KM; Yang H; Gardiner SK; Qin L; Reyes L; Fortune B; Burgoyne CF Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT388-403. PubMed ID: 27409498 [TBL] [Abstract][Full Text] [Related]
10. Impact of Rates of Change of Lamina Cribrosa and Optic Nerve Head Surface Depths on Visual Field Progression in Glaucoma. Wu Z; Lin C; Crowther M; Mak H; Yu M; Leung CK Invest Ophthalmol Vis Sci; 2017 Mar; 58(3):1825-1833. PubMed ID: 28353690 [TBL] [Abstract][Full Text] [Related]
11. Serial Changes in Lamina Cribrosa Depth and Neuroretinal Parameters in Glaucoma: Impact of Choroidal Thickness. Vianna JR; Lanoe VR; Quach J; Sharpe GP; Hutchison DM; Belliveau AC; Shuba LM; Nicolela MT; Chauhan BC Ophthalmology; 2017 Sep; 124(9):1392-1402. PubMed ID: 28461018 [TBL] [Abstract][Full Text] [Related]
12. The optic nerve head, lamina cribrosa, and nerve fiber layer in non-myopic and myopic children. Jnawali A; Mirhajianmoghadam H; Musial G; Porter J; Ostrin LA Exp Eye Res; 2020 Jun; 195():108041. PubMed ID: 32353426 [TBL] [Abstract][Full Text] [Related]
13. Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study. Luo H; Yang H; Gardiner SK; Hardin C; Sharpe GP; Caprioli J; Demirel S; Girkin CA; Liebmann JM; Mardin CY; Quigley HA; Scheuerle AF; Fortune B; Chauhan BC; Burgoyne CF Invest Ophthalmol Vis Sci; 2018 May; 59(6):2357-2370. PubMed ID: 29847642 [TBL] [Abstract][Full Text] [Related]
14. Increased prelaminar tissue thickness in patients with open-angle glaucoma and type 2 diabetes. Sim YS; Kwon JW; Jee D; Choi JA; Ko SH; Park CK PLoS One; 2019; 14(2):e0211641. PubMed ID: 30730917 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of two-dimensional Bruch's membrane opening minimum rim area for glaucoma diagnostics in a large patient cohort. Enders P; Adler W; Kiessling D; Weber V; Schaub F; Hermann MM; Dietlein T; Cursiefen C; Heindl LM Acta Ophthalmol; 2019 Feb; 97(1):60-67. PubMed ID: 29575745 [TBL] [Abstract][Full Text] [Related]
16. Determinants of lamina cribrosa depth in healthy Asian eyes: the Singapore Epidemiology Eye Study. Tun TA; Wang X; Baskaran M; Nongpiur ME; Tham YC; Nguyen DQ; Strouthidis NG; Aung T; Cheng CY; Boote C; Girard MJA Br J Ophthalmol; 2021 Mar; 105(3):367-373. PubMed ID: 32434775 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of structural reversal in Bruch's membrane opening-based morphometrics after glaucoma drainage device surgery. Gietzelt C; von Goscinski C; Lemke J; Schaub F; Hermann MM; Dietlein TS; Cursiefen C; Heindl LM; Enders P Graefes Arch Clin Exp Ophthalmol; 2020 Jun; 258(6):1227-1236. PubMed ID: 32140925 [TBL] [Abstract][Full Text] [Related]
19. Detection of Bruch's Membrane Opening in Healthy Individuals and Glaucoma Patients with and without High Myopia. Zheng F; Wu Z; Leung CKS Ophthalmology; 2018 Oct; 125(10):1537-1546. PubMed ID: 29934269 [TBL] [Abstract][Full Text] [Related]
20. Novel Bruch's Membrane Opening Minimum Rim Area Equalizes Disc Size Dependency and Offers High Diagnostic Power for Glaucoma. Enders P; Adler W; Schaub F; Hermann MM; Dietlein T; Cursiefen C; Heindl LM Invest Ophthalmol Vis Sci; 2016 Dec; 57(15):6596-6603. PubMed ID: 27951592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]