These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 33845125)
1. Nano-based drug delivery systems used as vehicles to enhance polyphenols therapeutic effect for diabetes mellitus treatment. Rocha S; Lucas M; Ribeiro D; Corvo ML; Fernandes E; Freitas M Pharmacol Res; 2021 Jul; 169():105604. PubMed ID: 33845125 [TBL] [Abstract][Full Text] [Related]
2. Antidiabetic effects of Olea europaea L. leaves in diabetic rats induced by high-fat diet and low-dose streptozotocin. Guex CG; Reginato FZ; de Jesus PR; Brondani JC; Lopes GHH; Bauermann LF J Ethnopharmacol; 2019 May; 235():1-7. PubMed ID: 30721736 [TBL] [Abstract][Full Text] [Related]
3. Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats. Jiao Y; Wang X; Jiang X; Kong F; Wang S; Yan C J Ethnopharmacol; 2017 Mar; 199():119-127. PubMed ID: 28163112 [TBL] [Abstract][Full Text] [Related]
4. Antidiabetic activities of chloroform fraction of Anthocleista vogelii Planch root bark in rats with diet- and alloxan-induced obesity-diabetes. Anyanwu GO; Iqbal J; Khan SU; Zaib S; Rauf K; Onyeneke CE; Ojo OO; Nisar-Ur-Rahman J Ethnopharmacol; 2019 Jan; 229():293-302. PubMed ID: 30342966 [TBL] [Abstract][Full Text] [Related]
5. Plumeria rubra L.- A review on its ethnopharmacological, morphological, phytochemical, pharmacological and toxicological studies. Bihani T J Ethnopharmacol; 2021 Jan; 264():113291. PubMed ID: 32841700 [TBL] [Abstract][Full Text] [Related]
6. Understanding the mode-of-action of Cassia auriculata via in silico and in vivo studies towards validating it as a long term therapy for type II diabetes. Mohd Fauzi F; John CM; Karunanidhi A; Mussa HY; Ramasamy R; Adam A; Bender A J Ethnopharmacol; 2017 Feb; 197():61-72. PubMed ID: 27452659 [TBL] [Abstract][Full Text] [Related]
7. Medicinal plants used in the traditional management of diabetes and its sequelae in Central America: A review. Giovannini P; Howes MJ; Edwards SE J Ethnopharmacol; 2016 May; 184():58-71. PubMed ID: 26924564 [TBL] [Abstract][Full Text] [Related]
8. Polyphenols and their applications: An approach in food chemistry and innovation potential. de Araújo FF; de Paulo Farias D; Neri-Numa IA; Pastore GM Food Chem; 2021 Feb; 338():127535. PubMed ID: 32798817 [TBL] [Abstract][Full Text] [Related]
9. Rhizoma Anemarrhenae extract ameliorates hyperglycemia and insulin resistance via activation of AMP-activated protein kinase in diabetic rodents. Han J; Yang N; Zhang F; Zhang C; Liang F; Xie W; Chen W J Ethnopharmacol; 2015 Aug; 172():368-76. PubMed ID: 26162543 [TBL] [Abstract][Full Text] [Related]
10. Polyphenols in dementia: From molecular basis to clinical trials. Molino S; Dossena M; Buonocore D; Ferrari F; Venturini L; Ricevuti G; Verri M Life Sci; 2016 Sep; 161():69-77. PubMed ID: 27493077 [TBL] [Abstract][Full Text] [Related]
11. The novel contributors of anti-diabetic potential in mulberry polyphenols revealed by UHPLC-HR-ESI-TOF-MS/MS. Li F; Zhang B; Chen G; Fu X Food Res Int; 2017 Oct; 100(Pt 1):873-884. PubMed ID: 28873762 [TBL] [Abstract][Full Text] [Related]
12. High-resolution PTP1B inhibition profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy: Proof-of-concept and antidiabetic constituents in crude extract of Eremophila lucida. Tahtah Y; Wubshet SG; Kongstad KT; Heskes AM; Pateraki I; Møller BL; Jäger AK; Staerk D Fitoterapia; 2016 Apr; 110():52-8. PubMed ID: 26882973 [TBL] [Abstract][Full Text] [Related]
13. Targeting oncogenic transcription factors by polyphenols: A novel approach for cancer therapy. Rajagopal C; Lankadasari MB; Aranjani JM; Harikumar KB Pharmacol Res; 2018 Apr; 130():273-291. PubMed ID: 29305909 [TBL] [Abstract][Full Text] [Related]
14. Antidiabetic properties of lyophilized extract of acorn (Quercus brantii Lindl.) on experimentally STZ-induced diabetic rats. Dogan A; Celik I; Kaya MS J Ethnopharmacol; 2015 Dec; 176():243-51. PubMed ID: 26505295 [TBL] [Abstract][Full Text] [Related]
15. Role of plant polyphenols in acrylamide formation and elimination. Liu Y; Wang P; Chen F; Yuan Y; Zhu Y; Yan H; Hu X Food Chem; 2015 Nov; 186():46-53. PubMed ID: 25976790 [TBL] [Abstract][Full Text] [Related]
16. Isolated flavonoids from Ficus racemosa stem bark possess antidiabetic, hypolipidemic and protective effects in albino Wistar rats. Keshari AK; Kumar G; Kushwaha PS; Bhardwaj M; Kumar P; Rawat A; Kumar D; Prakash A; Ghosh B; Saha S J Ethnopharmacol; 2016 Apr; 181():252-62. PubMed ID: 26869543 [TBL] [Abstract][Full Text] [Related]
17. Self-nanoemulsifying drug delivery systems for oral insulin delivery: in vitro and in vivo evaluations of enteric coating and drug loading. Li P; Tan A; Prestidge CA; Nielsen HM; Müllertz A Int J Pharm; 2014 Dec; 477(1-2):390-8. PubMed ID: 25455781 [TBL] [Abstract][Full Text] [Related]
18. Inhibitory effects of polyphenols from grape pomace extract on collagenase and elastase activity. Wittenauer J; Mäckle S; Sußmann D; Schweiggert-Weisz U; Carle R Fitoterapia; 2015 Mar; 101():179-87. PubMed ID: 25598188 [TBL] [Abstract][Full Text] [Related]
19. Rehmannia glutinosa (Gaertn.) DC. polysaccharide ameliorates hyperglycemia, hyperlipemia and vascular inflammation in streptozotocin-induced diabetic mice. Zhou J; Xu G; Yan J; Li K; Bai Z; Cheng W; Huang K J Ethnopharmacol; 2015 Apr; 164():229-38. PubMed ID: 25698243 [TBL] [Abstract][Full Text] [Related]
20. Potential therapies and diagnosis based on Golgi-targeted nano drug delivery systems. Zhang M; Xu N; Xu W; Ling G; Zhang P Pharmacol Res; 2022 Jan; 175():105861. PubMed ID: 34464677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]