These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33845268)

  • 1. High-throughput label-free detection of DNA-to-RNA transcription inhibition using brightfield microscopy and deep neural networks.
    Sauvat A; Cerrato G; Humeau J; Leduc M; Kepp O; Kroemer G
    Comput Biol Med; 2021 Jun; 133():104371. PubMed ID: 33845268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating Very Deep Convolutional Neural Networks for Nucleus Segmentation from Brightfield Cell Microscopy Images.
    Ali MAS; Misko O; Salumaa SO; Papkov M; Palo K; Fishman D; Parts L
    SLAS Discov; 2021 Oct; 26(9):1125-1137. PubMed ID: 34167359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical segmentation of nuclei in brightfield cell images with neural networks trained on fluorescently labelled samples.
    Fishman D; Salumaa SO; Majoral D; Laasfeld T; Peel S; Wildenhain J; Schreiner A; Palo K; Parts L
    J Microsc; 2021 Oct; 284(1):12-24. PubMed ID: 34081320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput label-free cell detection and counting from diffraction patterns with deep fully convolutional neural networks.
    Yi F; Park S; Moon I
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33686845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ArtSeg-Artifact segmentation and removal in brightfield cell microscopy images without manual pixel-level annotations.
    Ali MAS; Hollo K; Laasfeld T; Torp J; Tahk MJ; Rinken A; Palo K; Parts L; Fishman D
    Sci Rep; 2022 Jul; 12(1):11404. PubMed ID: 35794119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active mesh and neural network pipeline for cell aggregate segmentation.
    Smith MB; Sparks H; Almagro J; Chaigne A; Behrens A; Dunsby C; Salbreux G
    Biophys J; 2023 May; 122(9):1586-1599. PubMed ID: 37002604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison between two semantic deep learning frameworks for the autosomal dominant polycystic kidney disease segmentation based on magnetic resonance images.
    Bevilacqua V; Brunetti A; Cascarano GD; Guerriero A; Pesce F; Moschetta M; Gesualdo L
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 9):244. PubMed ID: 31830973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMC-Net: Asymmetric and multi-scale convolutional neural network for multi-label HPA classification.
    Xiang S; Liang Q; Hu Y; Tang P; Coppola G; Zhang D; Sun W
    Comput Methods Programs Biomed; 2019 Sep; 178():275-287. PubMed ID: 31416555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepHCS
    Lee G; Oh JW; Her NG; Jeong WK
    Med Image Anal; 2021 May; 70():101995. PubMed ID: 33640720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GRUU-Net: Integrated convolutional and gated recurrent neural network for cell segmentation.
    Wollmann T; Gunkel M; Chung I; Erfle H; Rippe K; Rohr K
    Med Image Anal; 2019 Aug; 56():68-79. PubMed ID: 31200289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmentation and Tracking of Mammary Epithelial Organoids in Brightfield Microscopy.
    Hradecka L; Wiesner D; Sumbal J; Koledova ZS; Maska M
    IEEE Trans Med Imaging; 2023 Jan; 42(1):281-290. PubMed ID: 36170389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plankton classification with high-throughput submersible holographic microscopy and transfer learning.
    MacNeil L; Missan S; Luo J; Trappenberg T; LaRoche J
    BMC Ecol Evol; 2021 Jun; 21(1):123. PubMed ID: 34134620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refinement of Convolutional Neural Network Based Cell Nuclei Detection Using Bayesian Inference.
    Kowal M; Korbicz J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():7216-7222. PubMed ID: 31947499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards pixel-to-pixel deep nucleus detection in microscopy images.
    Xing F; Xie Y; Shi X; Chen P; Zhang Z; Yang L
    BMC Bioinformatics; 2019 Sep; 20(1):472. PubMed ID: 31521104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic identification of crossovers in cryo-EM images of murine amyloid protein A fibrils with machine learning.
    Weber M; Bäuerle A; Schmidt M; Neumann M; Fändrich M; Ropinski T; Schmidt V
    J Microsc; 2020 Jan; 277(1):12-22. PubMed ID: 31859366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate Prediction of Biological Assays with High-Throughput Microscopy Images and Convolutional Networks.
    Hofmarcher M; Rumetshofer E; Clevert DA; Hochreiter S; Klambauer G
    J Chem Inf Model; 2019 Mar; 59(3):1163-1171. PubMed ID: 30840449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2D to 3D Evolutionary Deep Convolutional Neural Networks for Medical Image Segmentation.
    Hassanzadeh T; Essam D; Sarker R
    IEEE Trans Med Imaging; 2021 Feb; 40(2):712-721. PubMed ID: 33141663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. White blood cell detection, classification and analysis using phase imaging with computational specificity (PICS).
    Fanous MJ; He S; Sengupta S; Tangella K; Sobh N; Anastasio MA; Popescu G
    Sci Rep; 2022 Nov; 12(1):20043. PubMed ID: 36414631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breast cancer mitotic cell detection using cascade convolutional neural network with U-Net.
    Lu X; You Z; Sun M; Wu J; Zhang Z
    Math Biosci Eng; 2020 Dec; 18(1):673-695. PubMed ID: 33525113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.