BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33845410)

  • 1. Tombusviruses orchestrate the host endomembrane system to create elaborate membranous replication organelles.
    Nagy PD; Feng Z
    Curr Opin Virol; 2021 Jun; 48():30-41. PubMed ID: 33845410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tombusviruses Target a Major Crossroad in the Endocytic and Recycling Pathways via Co-opting Rab7 Small GTPase.
    Feng Z; Inaba JI; Nagy PD
    J Virol; 2021 Oct; 95(21):e0107621. PubMed ID: 34406861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The retromer is co-opted to deliver lipid enzymes for the biogenesis of lipid-enriched tombusviral replication organelles.
    Feng Z; Inaba JI; Nagy PD
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33376201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel viral strategy for host factor recruitment: The co-opted proteasomal Rpn11 protein interaction hub in cooperation with subverted actin filaments are targeted to deliver cytosolic host factors for viral replication.
    Molho M; Lin W; Nagy PD
    PLoS Pathog; 2021 Jun; 17(6):e1009680. PubMed ID: 34161398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly-hub function of ER-localized SNARE proteins in biogenesis of tombusvirus replication compartment.
    Sasvari Z; Kovalev N; Gonzalez PA; Xu K; Nagy PD
    PLoS Pathog; 2018 May; 14(5):e1007028. PubMed ID: 29746582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-opted Cellular Sac1 Lipid Phosphatase and PI(4)P Phosphoinositide Are Key Host Factors during the Biogenesis of the Tombusvirus Replication Compartment.
    Sasvari Z; Lin W; Inaba JI; Xu K; Kovalev N; Nagy PD
    J Virol; 2020 Jun; 94(12):. PubMed ID: 32269127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Key tethering function of Atg11 autophagy scaffold protein in formation of virus-induced membrane contact sites during tombusvirus replication.
    Kang Y; Lin W; Liu Y; Nagy PD
    Virology; 2022 Jul; 572():1-16. PubMed ID: 35533414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The centromeric histone CenH3 is recruited into the tombusvirus replication organelles.
    Gonzalez PA; Nagy PD
    PLoS Pathog; 2022 Jun; 18(6):e1010653. PubMed ID: 35767596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Race against Time between the Virus and Host: Actin-Assisted Rapid Biogenesis of Replication Organelles is Used by TBSV to Limit the Recruitment of Cellular Restriction Factors.
    Molho M; Zhu S; Nagy PD
    J Virol; 2022 Jun; 96(12):e0016821. PubMed ID: 35638821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Key interplay between the co-opted sorting nexin-BAR proteins and PI3P phosphoinositide in the formation of the tombusvirus replicase.
    Feng Z; Kovalev N; Nagy PD
    PLoS Pathog; 2020 Dec; 16(12):e1009120. PubMed ID: 33370420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-opting the fermentation pathway for tombusvirus replication: Compartmentalization of cellular metabolic pathways for rapid ATP generation.
    Lin W; Liu Y; Molho M; Zhang S; Wang L; Xie L; Nagy PD
    PLoS Pathog; 2019 Oct; 15(10):e1008092. PubMed ID: 31648290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tombusvirus-Host Interactions: Co-Opted Evolutionarily Conserved Host Factors Take Center Court.
    Nagy PD
    Annu Rev Virol; 2016 Sep; 3(1):491-515. PubMed ID: 27578441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subversion of selective autophagy for the biogenesis of tombusvirus replication organelles inhibits autophagy.
    Kang Y; Lin W; Nagy PD
    PLoS Pathog; 2024 Mar; 20(3):e1012085. PubMed ID: 38484009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-opting of nonATP-generating glycolytic enzymes for TBSV replication.
    Molho M; Chuang C; Nagy PD
    Virology; 2021 Jul; 559():15-29. PubMed ID: 33799077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Authentic in vitro replication of two tombusviruses in isolated mitochondrial and endoplasmic reticulum membranes.
    Xu K; Huang TS; Nagy PD
    J Virol; 2012 Dec; 86(23):12779-94. PubMed ID: 22973028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-Free and Cell-Based Approaches to Explore the Roles of Host Membranes and Lipids in the Formation of Viral Replication Compartment Induced by Tombusviruses.
    Nagy PD; Pogany J; Xu K
    Viruses; 2016 Mar; 8(3):68. PubMed ID: 26950140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-opted membranes, lipids, and host proteins: what have we learned from tombusviruses?
    Nagy PD
    Curr Opin Virol; 2022 Oct; 56():101258. PubMed ID: 36166851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-opted cytosolic proteins form condensate substructures within membranous replication organelles of a positive-strand RNA virus.
    Lin W; Nagy PD
    New Phytol; 2024 Mar; ():. PubMed ID: 38515267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of an RNA Virus Replicase in Artificial Giant Unilamellar Vesicles Supports Full Replication and Provides Protection for the Double-Stranded RNA Replication Intermediate.
    Kovalev N; Pogany J; Nagy PD
    J Virol; 2020 Aug; 94(18):. PubMed ID: 32641477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting alternative subcellular location for replication: tombusvirus replication switches to the endoplasmic reticulum in the absence of peroxisomes.
    Jonczyk M; Pathak KB; Sharma M; Nagy PD
    Virology; 2007 Jun; 362(2):320-30. PubMed ID: 17292435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.