These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33845998)

  • 1. A novel based-performance degradation indicator RUL prediction model and its application in rolling bearing.
    Yang C; Ma J; Wang X; Li X; Li Z; Luo T
    ISA Trans; 2022 Feb; 121():349-364. PubMed ID: 33845998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remaining Useful Life prediction of rolling bearings based on risk assessment and degradation state coefficient.
    Li Q; Yan C; Chen G; Wang H; Li H; Wu L
    ISA Trans; 2022 Oct; 129(Pt B):413-428. PubMed ID: 35181005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intelligent Online Monitoring of Rolling Bearing: Diagnosis and Prognosis.
    Hotait H; Chiementin X; Rasolofondraibe L
    Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34206610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model.
    Yan M; Wang X; Wang B; Chang M; Muhammad I
    ISA Trans; 2020 Mar; 98():471-482. PubMed ID: 31492470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remaining Useful Life Prediction of Rolling Bearings Based on Multi-Scale Attention Residual Network.
    Song L; Wu J; Wang L; Chen G; Shi Y; Liu Z
    Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new performance analysis method for rolling bearing based on the evidential reasoning rule considering perturbation.
    Zhang Y; Zhou G; Zhang W; He W; Wang Y; Zhang Y; Han P
    Sci Rep; 2022 Oct; 12(1):17842. PubMed ID: 36284194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification.
    Yang J; Peng Y; Xie J; Wang P
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Health indicator construction by quadratic function-based deep convolutional auto-encoder and its application into bearing RUL prediction.
    Chen D; Qin Y; Wang Y; Zhou J
    ISA Trans; 2021 Aug; 114():44-56. PubMed ID: 33402262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Reliable Prognosis Approach for Degradation Evaluation of Rolling Bearing Using MCLSTM.
    Huang G; Li H; Ou J; Zhang Y; Zhang M
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network.
    Wang H; Yang J; Shi L; Wang R
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long Short-Term Memory Neural Network with Transfer Learning and Ensemble Learning for Remaining Useful Life Prediction.
    Wang L; Liu H; Pan Z; Fan D; Zhou C; Wang Z
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Reliable Health Indicator for Fault Prognosis of Bearings.
    Duong BP; Khan SA; Shon D; Im K; Park J; Lim DS; Jang B; Kim JM
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Contact Fatigue Performance Degradation Trends Based on Multi-Domain Features and Temporal Convolutional Networks.
    Liu Y; Liu Y; Yang Y
    Entropy (Basel); 2023 Sep; 25(9):. PubMed ID: 37761615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Method for Remaining Useful Life Prediction of Roller Bearings Involving the Discrepancy and Similarity of Degradation Trajectories.
    Luo H; Bo L; Liu X; Zhang H
    Comput Intell Neurosci; 2021; 2021():2500997. PubMed ID: 34899887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on Remaining Useful Life Prediction Method of Rolling Bearing Based on Digital Twin.
    Zhang R; Zeng Z; Li Y; Liu J; Wang Z
    Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An effective method for remaining useful life estimation of bearings with elbow point detection and adaptive regression models.
    Yan M; Xie L; Muhammad I; Yang X; Liu Y
    ISA Trans; 2022 Sep; 128(Pt A):290-300. PubMed ID: 34799099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Multi-Featured Factor Analysis and Dynamic Window Rectification Method for Remaining Useful Life Prognosis of Rolling Bearings.
    Peng C; Zhao Y; Li C; Tang Z; Gui W
    Entropy (Basel); 2023 Nov; 25(11):. PubMed ID: 37998231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rolling Bearing Performance Degradation Assessment with Adaptive Sensitive Feature Selection and Multi-Strategy Optimized SVDD.
    Feng Z; Wang Z; Liu X; Li J
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaotic prediction of vibration performance degradation trend of rolling element bearing based on Weibull distribution.
    Cheng L; Xia X; Ye L
    Sci Prog; 2020; 103(1):36850419892194. PubMed ID: 31791201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A knowledge-data integration framework for rolling element bearing RUL prediction across its life cycle.
    Yang L; Li T; Dong Y; Duan R; Liao Y
    ISA Trans; 2024 Sep; 152():331-357. PubMed ID: 38987043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.