These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 33846334)
1. Soil microbiome manipulation triggers direct and possible indirect suppression against Ralstonia solanacearum and Fusarium oxysporum. Deng X; Zhang N; Shen Z; Zhu C; Liu H; Xu Z; Li R; Shen Q; Salles JF NPJ Biofilms Microbiomes; 2021 Apr; 7(1):33. PubMed ID: 33846334 [TBL] [Abstract][Full Text] [Related]
2. Phages enhance both phytopathogen density control and rhizosphere microbiome suppressiveness. Wang X; Wang S; Huang M; He Y; Guo S; Yang K; Wang N; Sun T; Yang H; Yang T; Xu Y; Shen Q; Friman V-P; Wei Z mBio; 2024 Jun; 15(6):e0301623. PubMed ID: 38780276 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of Suppressiveness of Soils Exhibiting Soil-Borne Disease Suppression after Long-Term Application of Organic Amendments by the Co-cultivation Method of Pathogenic Fusarium oxysporum and Indigenous Soil Microorganisms. Mitsuboshi M; Kioka Y; Noguchi K; Asakawa S Microbes Environ; 2018 Mar; 33(1):58-65. PubMed ID: 29459498 [TBL] [Abstract][Full Text] [Related]
4. Development of a Multiplex PCR Assay for the Detection of Tomato Wilt Caused by Coinfection of Liu J; Deng S; Chang W; Yu D; Wang H Plant Dis; 2024 May; 108(5):1128-1138. PubMed ID: 37953228 [TBL] [Abstract][Full Text] [Related]
5. Soil suppressiveness to fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization. Klein E; Ofek M; Katan J; Minz D; Gamliel A Phytopathology; 2013 Jan; 103(1):23-33. PubMed ID: 22950737 [TBL] [Abstract][Full Text] [Related]
6. Bio-organic soil amendment promotes the suppression of Ralstonia solanacearum by inducing changes in the functionality and composition of rhizosphere bacterial communities. Deng X; Zhang N; Li Y; Zhu C; Qu B; Liu H; Li R; Bai Y; Shen Q; Falcao Salles J New Phytol; 2022 Aug; 235(4):1558-1574. PubMed ID: 35569105 [TBL] [Abstract][Full Text] [Related]
7. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. Mazurier S; Corberand T; Lemanceau P; Raaijmakers JM ISME J; 2009 Aug; 3(8):977-91. PubMed ID: 19369971 [TBL] [Abstract][Full Text] [Related]
8. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Gu S; Wei Z; Shao Z; Friman VP; Cao K; Yang T; Kramer J; Wang X; Li M; Mei X; Xu Y; Shen Q; Kümmerli R; Jousset A Nat Microbiol; 2020 Aug; 5(8):1002-1010. PubMed ID: 32393858 [TBL] [Abstract][Full Text] [Related]
9. Probiotic Diversity Enhances Rhizosphere Microbiome Function and Plant Disease Suppression. Hu J; Wei Z; Friman VP; Gu SH; Wang XF; Eisenhauer N; Yang TJ; Ma J; Shen QR; Xu YC; Jousset A mBio; 2016 Dec; 7(6):. PubMed ID: 27965449 [TBL] [Abstract][Full Text] [Related]
10. Efficacy of microorganisms selected from compost to control soil-borne pathogens. Pugliese M; Gullino ML; Garibaldi A Commun Agric Appl Biol Sci; 2010; 75(4):665-9. PubMed ID: 21534476 [TBL] [Abstract][Full Text] [Related]
11. Indirect reduction of Ralstonia solanacearum via pathogen helper inhibition. Li M; Pommier T; Yin Y; Wang J; Gu S; Jousset A; Keuskamp J; Wang H; Wei Z; Xu Y; Shen Q; Kowalchuk GA ISME J; 2022 Mar; 16(3):868-875. PubMed ID: 34671104 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomic response of Ralstonia solanacearum to antimicrobial Pseudomonas fluorescens SN15-2 metabolites. Lou H; Wang X; Chen J; Wang B; Wang W Can J Microbiol; 2018 Nov; 64(11):816-825. PubMed ID: 29852076 [TBL] [Abstract][Full Text] [Related]
13. Suppression of bacterial wilt of tomato by bioorganic fertilizer made from the antibacterial compound producing strain Bacillus amyloliquefaciens HR62. Huang J; Wei Z; Tan S; Mei X; Shen Q; Xu Y J Agric Food Chem; 2014 Nov; 62(44):10708-16. PubMed ID: 25322261 [TBL] [Abstract][Full Text] [Related]
14. Succinoglycan Riclin reshaped the soil microbiota by accumulating plant probiotic species to improve the soil suppressiveness on Fusarium wilt of cucumber seedlings. Fu R; Cheng R; Wang S; Li J; Zhang J Int J Biol Macromol; 2021 Jul; 182():1883-1892. PubMed ID: 34062161 [TBL] [Abstract][Full Text] [Related]
15. The effect of transitional organic production practices on soilborne pests of tomato in a simulated microplot study. Chellemi DO; Rosskopf EN; Kokalis-Burelle N Phytopathology; 2013 Aug; 103(8):792-801. PubMed ID: 23837543 [TBL] [Abstract][Full Text] [Related]
16. Not only priming: Soil microbiota may protect tomato from root pathogens. Chialva M; Zhou Y; Spadaro D; Bonfante P Plant Signal Behav; 2018; 13(8):e1464855. PubMed ID: 29701498 [TBL] [Abstract][Full Text] [Related]
17. Bioorganic fertilizer enhances soil suppressive capacity against bacterial wilt of tomato. Liu L; Sun C; Liu S; Chai R; Huang W; Liu X; Tang C; Zhang Y PLoS One; 2015; 10(4):e0121304. PubMed ID: 25830639 [TBL] [Abstract][Full Text] [Related]
18. Bacterial community diversity associated with the severity of bacterial wilt disease in tomato fields in southeast China. Zheng X; Liu B; Zhu Y; Wang J; Zhang H; Wang Z Can J Microbiol; 2019 Jul; 65(7):538-549. PubMed ID: 30958971 [TBL] [Abstract][Full Text] [Related]
19. Phosphorus availability influences disease-suppressive soil microbiome through plant-microbe interactions. Cao Y; Shen Z; Zhang N; Deng X; Thomashow LS; Lidbury I; Liu H; Li R; Shen Q; Kowalchuk GA Microbiome; 2024 Sep; 12(1):185. PubMed ID: 39342390 [TBL] [Abstract][Full Text] [Related]
20. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. Cha JY; Han S; Hong HJ; Cho H; Kim D; Kwon Y; Kwon SK; Crüsemann M; Bok Lee Y; Kim JF; Giaever G; Nislow C; Moore BS; Thomashow LS; Weller DM; Kwak YS ISME J; 2016 Jan; 10(1):119-29. PubMed ID: 26057845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]