These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33846403)

  • 1. Higher order mode supercontinuum generation in tantalum pentoxide (Ta
    Fan R; Lin YY; Chang L; Boes A; Bowers J; Liu JW; Lin CH; Wang TK; Qiao J; Kuo HC; Lin GR; Shih MH; Hung YJ; Chiu YJ; Lee CK
    Sci Rep; 2021 Apr; 11(1):7978. PubMed ID: 33846403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visible to near-infrared octave spanning supercontinuum generation in tantalum pentoxide (Ta
    Fan R; Wu CL; Lin YY; Liu CY; Hwang PS; Liu CW; Qiao J; Shih MH; Hung YJ; Chiu YJ; Chu AK; Lee CK
    Opt Lett; 2019 Mar; 44(6):1512-1515. PubMed ID: 30874689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercontinuum generation in tantalum pentoxide waveguides for pump wavelengths in the 900 nm to 1500 nm spectral region.
    Woods JRC; Daykin J; Tong ASK; Lacava C; Petropoulos P; Tropper AC; Horak P; Wilkinson JS; Apostolopoulos V
    Opt Express; 2020 Oct; 28(21):32173-32184. PubMed ID: 33115180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mid-infrared supercontinuum generation using dispersion-engineered Ge(11.5)As(24)Se(64.5) chalcogenide channel waveguide.
    Karim MR; Rahman BM; Agrawal GP
    Opt Express; 2015 Mar; 23(5):6903-14. PubMed ID: 25836910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanophotonic tantala waveguides for supercontinuum generation pumped at 1560  nm.
    Lamee KF; Carlson DR; Newman ZL; Yu SP; Papp SB
    Opt Lett; 2020 Aug; 45(15):4192-4195. PubMed ID: 32735256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-phase modulation in highly confined submicron Ta
    Lin YY; Wu CL; Chi WC; Chiu YJ; Hung YJ; Chu AK; Lee CK
    Opt Express; 2016 Sep; 24(19):21633-41. PubMed ID: 27661901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four-wave-mixing in the loss low submicrometer Ta₂O₅ channel waveguide.
    Wu CL; Chiu YJ; Chen CL; Lin YY; Chu AK; Lee CK
    Opt Lett; 2015 Oct; 40(19):4528-31. PubMed ID: 26421573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of low-peak-power highly coherent broadband supercontinuum generation through a dispersion-engineered Si-rich silicon nitride waveguide.
    Karim MR; Al Kayed N; Rabiul Hossain M; Rahman BMA
    Appl Opt; 2020 Jul; 59(20):5948-5956. PubMed ID: 32672738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power Budget Analysis for Waveguide-Enhanced Raman Spectroscopy.
    Wang Z; Pearce SJ; Lin YC; Zervas MN; Bartlett PN; Wilkinson JS
    Appl Spectrosc; 2016 Aug; 70(8):1384-91. PubMed ID: 27301326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-loss pedestal Ta
    Sierra JH; Rangel RC; Samad RE; Vieira ND; Alayo MI; Carvalho DO
    Opt Express; 2019 Dec; 27(26):37516-37521. PubMed ID: 31878530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides.
    Yu M; Desiatov B; Okawachi Y; Gaeta AL; Lončar M
    Opt Lett; 2019 Mar; 44(5):1222-1225. PubMed ID: 30821753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially resolved multimode excitation for smooth supercontinuum generation in a SiN waveguide.
    Kou R; Ishizawa A; Yoshida K; Yamamoto N; Xu X; Kikkawa Y; Kawashima K; Aihara T; Tsuchizawa T; Cong G; Hitachi K; Nishikawa T; Oguri K; Yamada K
    Opt Express; 2023 Feb; 31(4):6088-6098. PubMed ID: 36823874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrabroadband supercontinuum generation in a CMOS-compatible platform.
    Halir R; Okawachi Y; Levy JS; Foster MA; Lipson M; Gaeta AL
    Opt Lett; 2012 May; 37(10):1685-7. PubMed ID: 22627537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent midinfrared supercontinuum generation using a rib waveguide pumped with 200  fs laser pulses at 2.8  μm.
    Saini TS; Trung Hoa NP; Nagasaka K; Luo X; Tuan TH; Suzuki T; Ohishi Y
    Appl Opt; 2018 Mar; 57(7):1689-1693. PubMed ID: 29522020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of waveguide background at visible wavelengths for on-chip nanoscopy.
    Coucheron DA; Helle ØI; Wilkinson JS; Murugan GS; Domínguez C; Angelskår H; Ahluwalia BS
    Opt Express; 2021 Jun; 29(13):20735-20746. PubMed ID: 34266156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm.
    Singh N; Xin M; Vermeulen D; Shtyrkova K; Li N; Callahan PT; Magden ES; Ruocco A; Fahrenkopf N; Baiocco C; Kuo BP; Radic S; Ippen E; Kärtner FX; Watts MR
    Light Sci Appl; 2018; 7():17131. PubMed ID: 30839639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized design for grating-coupled waveguide-enhanced Raman spectroscopy.
    Ettabib MA; Liu Z; Zervas MN; Wilkinson JS
    Opt Express; 2020 Dec; 28(25):37226-37235. PubMed ID: 33379561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadmium telluride waveguide for coherent MIR supercontinuum generation covering 3.5-20 µm.
    Long Z; Yang H; Li Y; Wu H; Liang H
    Opt Express; 2022 Jan; 30(2):2265-2277. PubMed ID: 35209370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical characterization of Ge
    Shang H; Zhang M; Sun D; Liu YG; Wang Z
    Appl Opt; 2021 Jun; 60(18):5451-5455. PubMed ID: 34263785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-power, ultra-broadband supercontinuum light generated in a single-mode fiber pumped with a nanosecond passively Q-switched microchip laser.
    Huang X; Pan Z; Hu A; Dong J
    Appl Opt; 2020 Apr; 59(10):3019-3025. PubMed ID: 32400578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.