These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33846411)

  • 21. Nuclear xenobiotic receptor PXR-null mouse exhibits hypophosphatemia and represses the Na/Pi-cotransporter SLC34A2.
    Konno Y; Moore R; Kamiya N; Negishi M
    Pharmacogenet Genomics; 2010 Jan; 20(1):9-17. PubMed ID: 19898264
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Luminal fructose inhibits rat intestinal sodium-phosphate cotransporter gene expression and phosphate uptake.
    Kirchner S; Muduli A; Casirola D; Prum K; Douard V; Ferraris RP
    Am J Clin Nutr; 2008 Apr; 87(4):1028-38. PubMed ID: 18400728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sodium-dependent phosphate uptake in the jejunum is post-transcriptionally regulated in pigs fed a low-phosphorus diet and is independent of dietary calcium concentration.
    Saddoris KL; Fleet JC; Radcliffe JS
    J Nutr; 2010 Apr; 140(4):731-6. PubMed ID: 20164365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intestinal and renal adaptation to a low-Pi diet of type II NaPi cotransporters in vitamin D receptor- and 1alphaOHase-deficient mice.
    Capuano P; Radanovic T; Wagner CA; Bacic D; Kato S; Uchiyama Y; St-Arnoud R; Murer H; Biber J
    Am J Physiol Cell Physiol; 2005 Feb; 288(2):C429-34. PubMed ID: 15643054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice.
    Myakala K; Motta S; Murer H; Wagner CA; Koesters R; Biber J; Hernando N
    Am J Physiol Renal Physiol; 2014 Apr; 306(8):F833-43. PubMed ID: 24553430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Type II Na+-Pi cotransporters in osteoblast mineral formation: regulation by inorganic phosphate.
    Lundquist P; Murer H; Biber J
    Cell Physiol Biochem; 2007; 19(1-4):43-56. PubMed ID: 17310099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intestinal Response to Acute Intragastric and Intravenous Administration of Phosphate in Rats.
    Layunta E; Pastor Arroyo EM; Kägi L; Thomas L; Levi M; Hernando N; Wagner CA
    Cell Physiol Biochem; 2019; 52(4):838-849. PubMed ID: 30946558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of intestinal NaPi-IIb cotransporter gene expression by estrogen.
    Xu H; Uno JK; Inouye M; Xu L; Drees JB; Collins JF; Ghishan FK
    Am J Physiol Gastrointest Liver Physiol; 2003 Dec; 285(6):G1317-24. PubMed ID: 12893629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High phosphorus diet-induced changes in NaPi-IIb phosphate transporter expression in the rat kidney: DNA microarray analysis.
    Suyama T; Okada S; Ishijima T; Iida K; Abe K; Nakai Y
    PLoS One; 2012; 7(1):e29483. PubMed ID: 22235299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Role of Intestinal Alkaline Phosphatase 3 (Akp3) in Inorganic Phosphate Homeostasis.
    Sasaki S; Segawa H; Hanazaki A; Kirino R; Fujii T; Ikuta K; Noguchi M; Sasaki S; Koike M; Tanifuji K; Shiozaki Y; Kaneko I; Tatsumi S; Shimohata T; Kawai Y; Narisawa S; Millán JL; Miyamoto KI
    Kidney Blood Press Res; 2018; 43(5):1409-1424. PubMed ID: 30212831
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vitamin D and type II sodium-dependent phosphate cotransporters.
    Kido S; Kaneko I; Tatsumi S; Segawa H; Miyamoto K
    Contrib Nephrol; 2013; 180():86-97. PubMed ID: 23652552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the isoforms of type IIb sodium-dependent phosphate cotransporter (Slc34a2) in yellow catfish, Pelteobagrus fulvidraco, and their vitamin D
    Chen P; Huang Y; Bayir A; Wang C
    Fish Physiol Biochem; 2017 Feb; 43(1):229-244. PubMed ID: 27620186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying the location of epidermal growth factor-responsive element involved in the regulation of type IIb sodium-phosphate cotransporter expression in porcine intestinal epithelial cells.
    Xing T; Tan X; Yu Q; Yang T; Fang R
    J Anim Physiol Anim Nutr (Berl); 2017 Dec; 101(6):1249-1258. PubMed ID: 27896869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of variations in dietary Pi intake on intestinal Pi transporters (NaPi-IIb, PiT-1, and PiT-2) and phosphate-regulating factors (PTH, FGF-23, and MEPE).
    Aniteli TM; de Siqueira FR; Dos Reis LM; Dominguez WV; de Oliveira EMC; Castelucci P; Moysés RMA; Jorgetti V
    Pflugers Arch; 2018 Apr; 470(4):623-632. PubMed ID: 29372301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Role of Sodium-Dependent Phosphate Transporter in Phosphate Homeostasis.
    Segawa H; Shiozaki Y; Kaneko I; Miyamoto K
    J Nutr Sci Vitaminol (Tokyo); 2015; 61 Suppl():S119-21. PubMed ID: 26598821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of a type IIb sodium-phosphate cotransporter from zebrafish (Danio rerio) kidney.
    Graham C; Nalbant P; Schölermann B; Hentschel H; Kinne RK; Werner A
    Am J Physiol Renal Physiol; 2003 Apr; 284(4):F727-36. PubMed ID: 12488247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Upregulation of the Na⁺-coupled phosphate cotransporters NaPi-IIa and NaPi-IIb by B-RAF.
    Pakladok T; Hosseinzadeh Z; Lebedeva A; Alesutan I; Lang F
    J Membr Biol; 2014 Feb; 247(2):137-45. PubMed ID: 24258620
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of rat intestinal Na-dependent phosphate transporters by dietary phosphate.
    Giral H; Caldas Y; Sutherland E; Wilson P; Breusegem S; Barry N; Blaine J; Jiang T; Wang XX; Levi M
    Am J Physiol Renal Physiol; 2009 Nov; 297(5):F1466-75. PubMed ID: 19675183
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-fat diets provoke phosphorus absorption from the small intestine in rats.
    Kawamoto K; Sakuma M; Tanaka S; Masuda M; Nakao-Muraoka M; Niida Y; Nakamatsu Y; Ito M; Taketani Y; Arai H
    Nutrition; 2020 Apr; 72():110694. PubMed ID: 32007805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular cloning, functional characterization, tissue distribution, and chromosomal localization of a human, small intestinal sodium-phosphate (Na+-Pi) transporter (SLC34A2).
    Xu H; Bai L; Collins JF; Ghishan FK
    Genomics; 1999 Dec; 62(2):281-4. PubMed ID: 10610722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.