BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33846444)

  • 1. Structural comparison of Acinetobacter baumannii β-ketoacyl-acyl carrier protein reductases in fatty acid and aryl polyene biosynthesis.
    Lee WC; Choi S; Jang A; Son K; Kim Y
    Sci Rep; 2021 Apr; 11(1):7945. PubMed ID: 33846444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural rearrangements occurring upon cofactor binding in the Mycobacterium smegmatis β-ketoacyl-acyl carrier protein reductase MabA.
    Küssau T; Flipo M; Van Wyk N; Viljoen A; Olieric V; Kremer L; Blaise M
    Acta Crystallogr D Struct Biol; 2018 May; 74(Pt 5):383-393. PubMed ID: 29717709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Escherichia coli FabG 3-ketoacyl-ACP reductase proteins lacking the assigned catalytic triad residues are active enzymes.
    Hu Z; Ma J; Chen Y; Tong W; Zhu L; Wang H; Cronan JE
    J Biol Chem; 2021; 296():100365. PubMed ID: 33545175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of the complementary activity of two ketosynthases in aryl polyene biosynthesis.
    Lee WC; Choi S; Jang A; Yeon J; Hwang E; Kim Y
    Sci Rep; 2021 Aug; 11(1):16340. PubMed ID: 34381152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-directed construction of a high-performance version of the enzyme FabG from the photosynthetic microorganism Synechocystis sp. PCC 6803.
    Liu Y; Feng Y; Cao X; Li X; Xue S
    FEBS Lett; 2015 Oct; 589(20 Pt B):3052-7. PubMed ID: 26358291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of NADP
    Blaise M; Van Wyk N; Banères-Roquet F; Guérardel Y; Kremer L
    Biochem J; 2017 Mar; 474(6):907-921. PubMed ID: 28126742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Characterisation of FabG from Yersinia pestis, a Key Component of Bacterial Fatty Acid Synthesis.
    Nanson JD; Forwood JK
    PLoS One; 2015; 10(11):e0141543. PubMed ID: 26539719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering the Binding Interactions between
    Choi S; Park J; Yeon J; Jang A; Lee WC; Kim Y
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33805050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ralstonia solanacearum fatty acid composition is determined by interaction of two 3-ketoacyl-acyl carrier protein reductases encoded on separate replicons.
    Feng SX; Ma JC; Yang J; Hu Z; Zhu L; Bi HK; Sun YR; Wang HH
    BMC Microbiol; 2015 Oct; 15():223. PubMed ID: 26490537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and substrate specificity of β-ketoacyl-acyl carrier protein synthase III from Acinetobacter baumannii.
    Lee WC; Jeong MC; Lee Y; Kwak C; Lee JY; Kim Y
    Mol Microbiol; 2018 Jun; 108(5):567-577. PubMed ID: 29528170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into Acinetobacter baumannii fatty acid synthesis 3-oxoacyl-ACP reductases.
    Cross EM; Adams FG; Waters JK; Aragão D; Eijkelkamp BA; Forwood JK
    Sci Rep; 2021 Mar; 11(1):7050. PubMed ID: 33782435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of RhlG, an essential beta-ketoacyl reductase in the rhamnolipid biosynthetic pathway of Pseudomonas aeruginosa.
    Miller DJ; Zhang YM; Rock CO; White SW
    J Biol Chem; 2006 Jun; 281(26):18025-32. PubMed ID: 16624803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting the Structural Elements for the Activation of β-Ketoacyl-(Acyl Carrier Protein) Reductase from Vibrio cholerae.
    Hou J; Zheng H; Chruszcz M; Zimmerman MD; Shumilin IA; Osinski T; Demas M; Grimshaw S; Minor W
    J Bacteriol; 2016 Feb; 198(3):463-76. PubMed ID: 26553852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic, inhibition and structural studies on 3-oxoacyl-ACP reductase from Plasmodium falciparum, a key enzyme in fatty acid biosynthesis.
    Wickramasinghe SR; Inglis KA; Urch JE; Müller S; van Aalten DM; Fairlamb AH
    Biochem J; 2006 Jan; 393(Pt 2):447-57. PubMed ID: 16225460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of FabG and FabI of the Streptomyces coelicolor dissociated fatty acid synthase.
    Singh R; Reynolds KA
    Chembiochem; 2015 Mar; 16(4):631-40. PubMed ID: 25662938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering the key residues in Plasmodium falciparum beta-ketoacyl acyl carrier protein reductase responsible for interactions with Plasmodium falciparum acyl carrier protein.
    Karmodiya K; Modak R; Sahoo N; Sajad S; Surolia N
    FEBS J; 2008 Oct; 275(19):4756-66. PubMed ID: 18721141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a Pseudomonas aeruginosa fatty acid biosynthetic gene cluster: purification of acyl carrier protein (ACP) and malonyl-coenzyme A:ACP transacylase (FabD).
    Kutchma AJ; Hoang TT; Schweizer HP
    J Bacteriol; 1999 Sep; 181(17):5498-504. PubMed ID: 10464226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key residues responsible for acyl carrier protein and beta-ketoacyl-acyl carrier protein reductase (FabG) interaction.
    Zhang YM; Wu B; Zheng J; Rock CO
    J Biol Chem; 2003 Dec; 278(52):52935-43. PubMed ID: 14527946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the mechanism of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III mtFabH: factors influencing catalysis and substrate specificity.
    Brown AK; Sridharan S; Kremer L; Lindenberg S; Dover LG; Sacchettini JC; Besra GS
    J Biol Chem; 2005 Sep; 280(37):32539-47. PubMed ID: 16040614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of hexanoyl-CoA bound to β-ketoacyl reductase FabG4 of Mycobacterium tuberculosis.
    Dutta D; Bhattacharyya S; Roychowdhury A; Biswas R; Das AK
    Biochem J; 2013 Feb; 450(1):127-39. PubMed ID: 23163771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.