These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33846469)

  • 1. Machine learning reveals that structural features distinguishing promiscuous and non-promiscuous compounds depend on target combinations.
    Feldmann C; Bajorath J
    Sci Rep; 2021 Apr; 11(1):7863. PubMed ID: 33846469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Biological Screening Compounds with Single- or Multi-Target Activity via Diagnostic Machine Learning.
    Feldmann C; Yonchev D; Bajorath J
    Biomolecules; 2020 Nov; 10(12):. PubMed ID: 33260876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic Data Analysis and Diagnostic Machine Learning Reveal Differences between Compounds with Single- and Multitarget Activity.
    Feldmann C; Yonchev D; Stumpfe D; Bajorath J
    Mol Pharm; 2020 Dec; 17(12):4652-4666. PubMed ID: 33151084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explainable machine learning predictions of dual-target compounds reveal characteristic structural features.
    Feldmann C; Philipps M; Bajorath J
    Sci Rep; 2021 Nov; 11(1):21594. PubMed ID: 34732806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Promiscuity Cliffs Using Machine Learning.
    Blaschke T; Feldmann C; Bajorath J
    Mol Inform; 2021 Jan; 40(1):e2000196. PubMed ID: 32881355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity profile relationships between structurally similar promiscuous compounds.
    Hu Y; Bajorath J
    Eur J Med Chem; 2013 Nov; 69():393-8. PubMed ID: 24077530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiating Inhibitors of Closely Related Protein Kinases with Single- or Multi-Target Activity via Explainable Machine Learning and Feature Analysis.
    Feldmann C; Bajorath J
    Biomolecules; 2022 Apr; 12(4):. PubMed ID: 35454147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the tendency of therapeutic target proteins to bind promiscuous or selective compounds.
    Hu Y; Bajorath J
    PLoS One; 2015; 10(5):e0126838. PubMed ID: 26000736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matched molecular pair analysis of small molecule microarray data identifies promiscuity cliffs and reveals molecular origins of extreme compound promiscuity.
    Dimova D; Hu Y; Bajorath J
    J Med Chem; 2012 Nov; 55(22):10220-8. PubMed ID: 23050678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data structures for computational compound promiscuity analysis and exemplary applications to inhibitors of the human kinome.
    Miljković F; Bajorath J
    J Comput Aided Mol Des; 2020 Jan; 34(1):1-10. PubMed ID: 31792884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-label approach to target prediction taking ligand promiscuity into account.
    Afzal AM; Mussa HY; Turner RE; Bender A; Glen RC
    J Cheminform; 2015; 7():24. PubMed ID: 26064191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning Distinguishes with High Accuracy between Pan-Assay Interference Compounds That Are Promiscuous or Represent Dark Chemical Matter.
    Jasial S; Gilberg E; Blaschke T; Bajorath J
    J Med Chem; 2018 Nov; 61(22):10255-10264. PubMed ID: 30422657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How promiscuous are pharmaceutically relevant compounds? A data-driven assessment.
    Hu Y; Bajorath J
    AAPS J; 2013 Jan; 15(1):104-11. PubMed ID: 23090085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the multi-modal binding propensity of small molecules: towards an understanding of drug promiscuity.
    Park K; Lee S; Ahn HS; Kim D
    Mol Biosyst; 2009 Aug; 5(8):844-53. PubMed ID: 19603120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying Promiscuous Compounds with Activity against Different Target Classes.
    Feldmann C; Miljković F; Yonchev D; Bajorath J
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31752252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters.
    Stork C; Chen Y; Šícho M; Kirchmair J
    J Chem Inf Model; 2019 Mar; 59(3):1030-1043. PubMed ID: 30624935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing compound activity records and promiscuity degrees in light of publication statistics.
    Hu Y; Bajorath J
    F1000Res; 2016; 5():. PubMed ID: 27347396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structured data sets of compounds with multi-target and corresponding single-target activity from biological assays.
    Feldmann C; Yonchev D; Bajorath J
    Future Sci OA; 2021 Mar; 7(5):FSO685. PubMed ID: 34046190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature importance correlation from machine learning indicates functional relationships between proteins and similar compound binding characteristics.
    Rodríguez-Pérez R; Bajorath J
    Sci Rep; 2021 Jul; 11(1):14245. PubMed ID: 34244588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.