BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 33846780)

  • 1. Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review).
    Zhang Y; Al Mamun A; Yuan Y; Lu Q; Xiong J; Yang S; Wu C; Wu Y; Wang J
    Mol Med Rep; 2021 Jun; 23(6):. PubMed ID: 33846780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minocycline treatment inhibits lipid peroxidation, preserves spinal cord ultrastructure, and improves functional outcome after traumatic spinal cord injury in the rat.
    Sonmez E; Kabatas S; Ozen O; Karabay G; Turkoglu S; Ogus E; Yilmaz C; Caner H; Altinors N
    Spine (Phila Pa 1976); 2013 Jul; 38(15):1253-9. PubMed ID: 23370685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A re-assessment of minocycline as a neuroprotective agent in a rat spinal cord contusion model.
    Pinzon A; Marcillo A; Quintana A; Stamler S; Bunge MB; Bramlett HM; Dietrich WD
    Brain Res; 2008 Dec; 1243():146-51. PubMed ID: 18838063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective effects of minocycline on experimental spinal cord injury in rats.
    Aras M; Altas M; Motor S; Dokuyucu R; Yilmaz A; Ozgiray E; Seraslan Y; Yilmaz N
    Injury; 2015 Aug; 46(8):1471-4. PubMed ID: 26052053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute spinal cord injury: A review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention.
    Hayta E; Elden H
    J Chem Neuroanat; 2018 Jan; 87():25-31. PubMed ID: 28803968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathophysiology and pharmacologic treatment of acute spinal cord injury.
    Kwon BK; Tetzlaff W; Grauer JN; Beiner J; Vaccaro AR
    Spine J; 2004; 4(4):451-64. PubMed ID: 15246307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of minocycline and FK506 alone and in combination on enhanced behavioral and biochemical recovery from spinal cord injury in rats.
    Ahmad M; Zakaria A; Almutairi KM
    Pharmacol Biochem Behav; 2016 Jun; 145():45-54. PubMed ID: 27106204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury.
    Kong X; Gao J
    J Cell Mol Med; 2017 May; 21(5):941-954. PubMed ID: 27957787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minocycline Reduces the Severity of Autonomic Dysreflexia after Experimental Spinal Cord Injury.
    Squair JW; Ruiz I; Phillips AA; Zheng MMZ; Sarafis ZK; Sachdeva R; Gopaul R; Liu J; Tetzlaff W; West CR; Krassioukov AV
    J Neurotrauma; 2018 Dec; 35(24):2861-2871. PubMed ID: 30113266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Honokiol downregulates Kruppel-like factor 4 expression, attenuates inflammation, and reduces histopathology after spinal cord injury in rats.
    Liu J; Zhang C; Liu Z; Zhang J; Xiang Z; Sun T
    Spine (Phila Pa 1976); 2015 Mar; 40(6):363-8. PubMed ID: 25774462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ghrelin alleviates spinal cord injury in rats via its anti-inflammatory effects.
    Erşahın M; Toklu HZ; Erzık C; Akakin D; Tetık S; Sener G; Yeğen BC
    Turk Neurosurg; 2011; 21(4):599-605. PubMed ID: 22194122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ginsenoside Rg3 Improves Recovery from Spinal Cord Injury in Rats via Suppression of Neuronal Apoptosis, Pro-Inflammatory Mediators, and Microglial Activation.
    Kim DK; Kweon KJ; Kim P; Kim HJ; Kim SS; Sohn NW; Maeng S; Shin JW
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28085110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological neuroprotective therapy for acute spinal cord injury: state of the art.
    Martiñón S; Ibarra A
    Mini Rev Med Chem; 2008 Mar; 8(3):222-30. PubMed ID: 18336342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combinational protective therapy for spinal cord injury medicated by sialic acid-driven and polyethylene glycol based micelles.
    Wang XJ; Shu GF; Xu XL; Peng CH; Lu CY; Cheng XY; Luo XC; Li J; Qi J; Kang XQ; Jin FY; Chen MJ; Ying XY; You J; Du YZ; Ji JS
    Biomaterials; 2019 Oct; 217():119326. PubMed ID: 31288173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurologic and Histologic Tests Used to Measure Neuroprotective Effectiveness of Virus-Derived Immune-Modulating Proteins.
    Kwiecien JM; Yaron JR; Delaney KH; Lucas AR
    Methods Mol Biol; 2021; 2225():227-239. PubMed ID: 33108666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aescin reduces oxidative stress and provides neuroprotection in experimental traumatic spinal cord injury.
    Cheng P; Kuang F; Ju G
    Free Radic Biol Med; 2016 Oct; 99():405-417. PubMed ID: 27596954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GAPDH/Siah1 cascade is involved in traumatic spinal cord injury and could be attenuated by sivelestat sodium.
    Huo J; Zhu XL; Ma R; Dong HL; Su BX
    Neuroscience; 2016 Aug; 330():171-80. PubMed ID: 27256506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Montelukast inhibits caspase-3 activity and ameliorates oxidative damage in the spinal cord and urinary bladder of rats with spinal cord injury.
    Erşahin M; Çevik Ö; Akakın D; Şener A; Özbay L; Yegen BC; Şener G
    Prostaglandins Other Lipid Mediat; 2012 Dec; 99(3-4):131-9. PubMed ID: 22986158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of combined treatment of minocycline and methylprednisolone on the expression of tumor necrosis factor alpha and interleukine-6 in experimental spinal cord injury: a light and electron microscopic study.
    Sencar L; Yilmaz DM; Tuli A; Polat S
    Ultrastruct Pathol; 2020 May; 44(3):283-299. PubMed ID: 32567988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanowired drug delivery to enhance neuroprotection in spinal cord injury.
    Tian ZR; Sharma A; Nozari A; Subramaniam R; Lundstedt T; Sharma HS
    CNS Neurol Disord Drug Targets; 2012 Feb; 11(1):86-95. PubMed ID: 22385571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.