These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1073 related articles for article (PubMed ID: 33846890)
1. RPLS-Net: pulmonary lobe segmentation based on 3D fully convolutional networks and multi-task learning. Liu J; Wang C; Guo J; Shao J; Xu X; Liu X; Li H; Li W; Yi Z Int J Comput Assist Radiol Surg; 2021 Jun; 16(6):895-904. PubMed ID: 33846890 [TBL] [Abstract][Full Text] [Related]
2. Multi-view secondary input collaborative deep learning for lung nodule 3D segmentation. Dong X; Xu S; Liu Y; Wang A; Saripan MI; Li L; Zhang X; Lu L Cancer Imaging; 2020 Aug; 20(1):53. PubMed ID: 32738913 [TBL] [Abstract][Full Text] [Related]
3. A Fissure-Aided Registration Approach for Automatic Pulmonary Lobe Segmentation Using Deep Learning. Xue M; Han L; Song Y; Rao F; Peng D Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366258 [TBL] [Abstract][Full Text] [Related]
4. Fully Automated Lung Lobe Segmentation in Volumetric Chest CT with 3D U-Net: Validation with Intra- and Extra-Datasets. Park J; Yun J; Kim N; Park B; Cho Y; Park HJ; Song M; Lee M; Seo JB J Digit Imaging; 2020 Feb; 33(1):221-230. PubMed ID: 31152273 [TBL] [Abstract][Full Text] [Related]
5. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
6. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation. Wang B; Lei Y; Tian S; Wang T; Liu Y; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X Med Phys; 2019 Apr; 46(4):1707-1718. PubMed ID: 30702759 [TBL] [Abstract][Full Text] [Related]
7. Vessel segmentation from volumetric images: a multi-scale double-pathway network with class-balanced loss at the voxel level. Chen Y; Fan S; Chen Y; Che C; Cao X; He X; Song X; Zhao F Med Phys; 2021 Jul; 48(7):3804-3814. PubMed ID: 33969487 [TBL] [Abstract][Full Text] [Related]
8. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Zhou X; Takayama R; Wang S; Hara T; Fujita H Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602 [TBL] [Abstract][Full Text] [Related]
9. Pulmonary nodule segmentation with CT sample synthesis using adversarial networks. Qin Y; Zheng H; Huang X; Yang J; Zhu YM Med Phys; 2019 Mar; 46(3):1218-1229. PubMed ID: 30575046 [TBL] [Abstract][Full Text] [Related]
10. An application of cascaded 3D fully convolutional networks for medical image segmentation. Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583 [TBL] [Abstract][Full Text] [Related]
11. A new architecture combining convolutional and transformer-based networks for automatic 3D multi-organ segmentation on CT images. Li C; Bagher-Ebadian H; Sultan R; Elshaikh M; Movsas B; Zhu D; Chetty IJ Med Phys; 2023 Nov; 50(11):6990-7002. PubMed ID: 37738468 [TBL] [Abstract][Full Text] [Related]
12. Deep convolutional neural network for segmentation of knee joint anatomy. Zhou Z; Zhao G; Kijowski R; Liu F Magn Reson Med; 2018 Dec; 80(6):2759-2770. PubMed ID: 29774599 [TBL] [Abstract][Full Text] [Related]
13. Hepatic and portal vein segmentation with dual-stream deep neural network. Xu J; Jiang W; Wu J; Zhang W; Zhu Z; Xin J; Zheng N; Wang B Med Phys; 2024 Aug; 51(8):5441-5456. PubMed ID: 38648676 [TBL] [Abstract][Full Text] [Related]
14. Automated pulmonary nodule detection in CT images using 3D deep squeeze-and-excitation networks. Gong L; Jiang S; Yang Z; Zhang G; Wang L Int J Comput Assist Radiol Surg; 2019 Nov; 14(11):1969-1979. PubMed ID: 31028657 [TBL] [Abstract][Full Text] [Related]
15. Scalable quorum-based deep neural networks with adversarial learning for automated lung lobe segmentation in fast helical free-breathing CTs. Stiehl B; Lauria M; Singhrao K; Goldin J; Barjaktarevic I; Low D; Santhanam A Int J Comput Assist Radiol Surg; 2021 Oct; 16(10):1775-1784. PubMed ID: 34378122 [TBL] [Abstract][Full Text] [Related]
16. Swin Unet3D: a three-dimensional medical image segmentation network combining vision transformer and convolution. Cai Y; Long Y; Han Z; Liu M; Zheng Y; Yang W; Chen L BMC Med Inform Decis Mak; 2023 Feb; 23(1):33. PubMed ID: 36788560 [TBL] [Abstract][Full Text] [Related]
17. HFCF-Net: A hybrid-feature cross fusion network for COVID-19 lesion segmentation from CT volumetric images. Wang Y; Yang Q; Tian L; Zhou X; Rekik I; Huang H Med Phys; 2022 Jun; 49(6):3797-3815. PubMed ID: 35301729 [TBL] [Abstract][Full Text] [Related]
18. Esophagus segmentation in CT via 3D fully convolutional neural network and random walk. Fechter T; Adebahr S; Baltas D; Ben Ayed I; Desrosiers C; Dolz J Med Phys; 2017 Dec; 44(12):6341-6352. PubMed ID: 28940372 [TBL] [Abstract][Full Text] [Related]
19. Automated vessel segmentation in lung CT and CTA images via deep neural networks. Tan W; Zhou L; Li X; Yang X; Chen Y; Yang J J Xray Sci Technol; 2021; 29(6):1123-1137. PubMed ID: 34421004 [TBL] [Abstract][Full Text] [Related]
20. Automatic segmentation of the pulmonary lobes from fissures, airways, and lung borders: evaluation of robustness against missing data. van Rikxoort EM; Prokop M; de Hoop B; Viergever MA; Pluim JP; van Ginneken B Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):263-71. PubMed ID: 20425996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]