These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33847156)

  • 1. Outcomes of Artificial Intelligence Volumetric Assessment of Kidneys and Renal Tumors for Preoperative Assessment of Nephron-Sparing Interventions.
    Houshyar R; Glavis-Bloom J; Bui TL; Chahine C; Bardis MD; Ushinsky A; Liu H; Bhatter P; Lebby E; Fujimoto D; Grant W; Tran-Harding K; Landman J; Chow DS; Chang PD
    J Endourol; 2021 Sep; 35(9):1411-1418. PubMed ID: 33847156
    [No Abstract]   [Full Text] [Related]  

  • 2. Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases.
    Lindgren Belal S; Sadik M; Kaboteh R; Enqvist O; Ulén J; Poulsen MH; Simonsen J; Høilund-Carlsen PF; Edenbrandt L; Trägårdh E
    Eur J Radiol; 2019 Apr; 113():89-95. PubMed ID: 30927965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weakly-supervised convolutional neural networks of renal tumor segmentation in abdominal CTA images.
    Yang G; Wang C; Yang J; Chen Y; Tang L; Shao P; Dillenseger JL; Shu H; Luo L
    BMC Med Imaging; 2020 Apr; 20(1):37. PubMed ID: 32293303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep-learning convolutional neural network: Inner and outer bladder wall segmentation in CT urography.
    Gordon MN; Hadjiiski LM; Cha KH; Samala RK; Chan HP; Cohan RH; Caoili EM
    Med Phys; 2019 Feb; 46(2):634-648. PubMed ID: 30520055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated differentiation of benign renal oncocytoma and chromophobe renal cell carcinoma on computed tomography using deep learning.
    Baghdadi A; Aldhaam NA; Elsayed AS; Hussein AA; Cavuoto LA; Kauffman E; Guru KA
    BJU Int; 2020 Apr; 125(4):553-560. PubMed ID: 31901213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of a Deep Learning Algorithm for Automated Segmentation and Quantification of Traumatic Pelvic Hematomas on CT.
    Dreizin D; Zhou Y; Zhang Y; Tirada N; Yuille AL
    J Digit Imaging; 2020 Feb; 33(1):243-251. PubMed ID: 31172331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convolutional neural network-based kidney volume estimation from low-dose unenhanced computed tomography scans.
    Müller L; Tibyampansha D; Mildenberger P; Panholzer T; Jungmann F; Halfmann MC
    BMC Med Imaging; 2023 Nov; 23(1):187. PubMed ID: 37968580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3D-2D Hybrid U-Net Convolutional Neural Network Approach to Prostate Organ Segmentation of Multiparametric MRI.
    Ushinsky A; Bardis M; Glavis-Bloom J; Uchio E; Chantaduly C; Nguyentat M; Chow D; Chang PD; Houshyar R
    AJR Am J Roentgenol; 2021 Jan; 216(1):111-116. PubMed ID: 32812797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Augmented reality for image guided therapy (ARIGT) of kidney tumor during nephron sparing surgery (NSS): animal model and clinical approach].
    Drewniak T; Rzepecki M; Juszczak K; Kwiatek W; Bielecki J; Zieliński K; Ruta A; Czekierda Ł; Moczulskis Z
    Folia Med Cracov; 2011; 51(1-4):77-90. PubMed ID: 22891540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automation of Wilms' tumor segmentation by artificial intelligence.
    Hild O; Berriet P; Nallet J; Salvi L; Lenoir M; Henriet J; Thiran JP; Auber F; Chaussy Y
    Cancer Imaging; 2024 Jul; 24(1):83. PubMed ID: 38956718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parenchymal Volumetric Assessment as a Predictive Tool to Determine Renal Function Benefit of Nephron-Sparing Surgery Compared with Radical Nephrectomy.
    Liss MA; DeConde R; Caovan D; Hofler J; Gabe M; Palazzi KL; Patel ND; Lee HJ; Ideker T; Van Poppel H; Karow D; Aertsen M; Casola G; Derweesh IH
    J Endourol; 2016 Jan; 30(1):114-21. PubMed ID: 26192380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated segmentation of kidney and renal mass and automated detection of renal mass in CT urography using 3D U-Net-based deep convolutional neural network.
    Lin Z; Cui Y; Liu J; Sun Z; Ma S; Zhang X; Wang X
    Eur Radiol; 2021 Jul; 31(7):5021-5031. PubMed ID: 33439313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated classification of solid renal masses on contrast-enhanced computed tomography images using convolutional neural network with decision fusion.
    Zabihollahy F; Schieda N; Krishna S; Ukwatta E
    Eur Radiol; 2020 Sep; 30(9):5183-5190. PubMed ID: 32350661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AI-based segmentation of renal enhanced CT images for quantitative evaluate of chronic kidney disease.
    Luo H; Li J; Huang H; Jiao L; Zheng S; Ying Y; Li Q
    Sci Rep; 2024 Jul; 14(1):16890. PubMed ID: 39043766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of 3D volumetric-based renal function prediction calculator for nephron sparing surgery.
    Corradi R; Kabra A; Suarez M; Oppenheimer J; Okhunov Z; White H; Nougaret S; Vargas HA; Landman J; Coleman J; Liss MA
    Int Urol Nephrol; 2017 Apr; 49(4):615-621. PubMed ID: 28161843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning.
    Liang S; Tang F; Huang X; Yang K; Zhong T; Hu R; Liu S; Yuan X; Zhang Y
    Eur Radiol; 2019 Apr; 29(4):1961-1967. PubMed ID: 30302589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-dimensional volume rendered computerized tomography for preoperative evaluation and intraoperative treatment of patients undergoing nephron sparing surgery.
    Coll DM; Uzzo RG; Herts BR; Davros WJ; Wirth SL; Novick AC
    J Urol; 1999 Apr; 161(4):1097-102. PubMed ID: 10081846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT.
    Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I
    Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully Automated Convolutional Neural Network Method for Quantification of Breast MRI Fibroglandular Tissue and Background Parenchymal Enhancement.
    Ha R; Chang P; Mema E; Mutasa S; Karcich J; Wynn RT; Liu MZ; Jambawalikar S
    J Digit Imaging; 2019 Feb; 32(1):141-147. PubMed ID: 30076489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.