BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33847172)

  • 1. Redox-Sensitive Mapping of a Mouse Tumor Model Using Sparse Projection Sampling of Electron Paramagnetic Resonance.
    Kimura K; Iguchi N; Nakano H; Yasui H; Matsumoto S; Inanami O; Hirata H
    Antioxid Redox Signal; 2022 Jan; 36(1-3):57-69. PubMed ID: 33847172
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparative studies with EPR and MRI on the in vivo tissue redox status estimation using redox-sensitive nitroxyl probes: influence of the choice of the region of interest.
    Matsumoto KI; Mitchell JB; Krishna MC
    Free Radic Res; 2018 Feb; 52(2):248-255. PubMed ID: 29320888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Extracellular pH Mapping of Tumors Using Electron Paramagnetic Resonance.
    Komarov DA; Ichikawa Y; Yamamoto K; Stewart NJ; Matsumoto S; Yasui H; Kirilyuk IA; Khramtsov VV; Inanami O; Hirata H
    Anal Chem; 2018 Dec; 90(23):13938-13945. PubMed ID: 30372035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressed sensing of spatial electron paramagnetic resonance imaging.
    Johnson DH; Ahmad R; He G; Samouilov A; Zweier JL
    Magn Reson Med; 2014 Sep; 72(3):893-901. PubMed ID: 24123102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitroxyl Radical as a Theranostic Contrast Agent in Magnetic Resonance Redox Imaging.
    Matsumoto KI; Nakanishi I; Zhelev Z; Bakalova R; Aoki I
    Antioxid Redox Signal; 2022 Jan; 36(1-3):95-121. PubMed ID: 34148403
    [No Abstract]   [Full Text] [Related]  

  • 6. Accelerated electron paramagnetic resonance imaging using partial Fourier compressed sensing reconstruction.
    Chou CC; Chandramouli GV; Shin T; Devasahayam N; McMillan A; Babadi B; Gullapalli R; Krishna MC; Zhuo J
    Magn Reson Imaging; 2017 Apr; 37():90-99. PubMed ID: 27989911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and testing of a CW-EPR apparatus for imaging of short-lifetime nitroxyl radicals in mouse head.
    Sato-Akaba H; Fujii H; Hirata H
    J Magn Reson; 2008 Aug; 193(2):191-8. PubMed ID: 18502159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D pulse EPR imaging from sparse-view projections via constrained, total variation minimization.
    Qiao Z; Redler G; Epel B; Qian Y; Halpern H
    J Magn Reson; 2015 Sep; 258():49-57. PubMed ID: 26225440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of in vivo three-dimensional T
    Kubota H; Komarov DA; Yasui H; Matsumoto S; Inanami O; Kirilyuk IA; Khramtsov VV; Hirata H
    MAGMA; 2017 Jun; 30(3):291-298. PubMed ID: 28063096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility and assessment of non-invasive in vivo redox status using electron paramagnetic resonance imaging.
    Yamada KI; Kuppusamy P; English S; Yoo J; Irie A; Subramanian S; Mitchell JB; Krishna MC
    Acta Radiol; 2002 Jul; 43(4):433-40. PubMed ID: 12225490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Half-life mapping of nitroxyl radicals with three-dimensional electron paramagnetic resonance imaging at an interval of 3.6 seconds.
    Sato-Akaba H; Kuwahara Y; Fujii H; Hirata H
    Anal Chem; 2009 Sep; 81(17):7501-6. PubMed ID: 19645455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a fast-scan EPR imaging system for highly accelerated free radical imaging.
    Samouilov A; Ahmad R; Boslett J; Liu X; Petryakov S; Zweier JL
    Magn Reson Med; 2019 Aug; 82(2):842-853. PubMed ID: 31020713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping of redox status in a brain-disease mouse model by three-dimensional EPR imaging.
    Fujii H; Sato-Akaba H; Kawanishi K; Hirata H
    Magn Reson Med; 2011 Jan; 65(1):295-303. PubMed ID: 20860000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of GPU-accelerated back projection for EPR imaging.
    Qiao Z; Redler G; Epel B; Qian Y; Halpern H
    J Xray Sci Technol; 2015; 23(4):423-33. PubMed ID: 26410654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional electron paramagnetic resonance imaging of mice using ascorbic acid sensitive nitroxide imaging probes.
    Sato-Akaba H; Emoto MC; Yamada KI; Koshino H; Fujii HG
    Free Radic Res; 2021 Oct; 55(9-10):950-957. PubMed ID: 34632934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Algebraic reconstruction of 3D spatial EPR images from high numbers of noisy projections: An improved image reconstruction technique for high resolution fast scan EPR imaging.
    Komarov DA; Samouilov A; Ahmad R; Zweier JL
    J Magn Reson; 2020 Oct; 319():106812. PubMed ID: 32966948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization-based image reconstruction from sparsely sampled data in electron paramagnetic resonance imaging.
    Qiao Z; Zhang Z; Pan X; Epel B; Redler G; Xia D; Halpern H
    J Magn Reson; 2018 Sep; 294():24-34. PubMed ID: 30005191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competition of nitroxyl contrast agents as an in vivo tissue redox probe: comparison of pharmacokinetics by the bile flow monitoring (BFM) and blood circulating monitoring (BCM) methods using X-band EPR and simulation of decay profiles.
    Okajo A; Matsumoto K; Mitchell JB; Krishna MC; Endo K
    Magn Reson Med; 2006 Aug; 56(2):422-31. PubMed ID: 16810697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo imaging of a stable paramagnetic probe by pulsed-radiofrequency electron paramagnetic resonance spectroscopy.
    Murugesan R; Cook JA; Devasahayam N; Afeworki M; Subramanian S; Tschudin R; Larsen JA; Mitchell JB; Russo A; Krishna MC
    Magn Reson Med; 1997 Sep; 38(3):409-14. PubMed ID: 9339442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three novel accurate pixel-driven projection methods for 2D CT and 3D EPR imaging.
    Qiao Z; Redler G; Gui Z; Qian Y; Epel B; Halpern H
    J Xray Sci Technol; 2018; 26(1):83-102. PubMed ID: 29036875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.