These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33847385)

  • 1. Drought: Sensing, signalling, effects and tolerance in higher plants.
    Mukarram M; Choudhary S; Kurjak D; Petek A; Khan MMA
    Physiol Plant; 2021 Jun; 172(2):1291-1300. PubMed ID: 33847385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The ABC of abscisic acid action in plant drought stress responses].
    Leung J; Valon C; Moreau B; Boeglin M; Lefoulon C; Joshi-Saha A; Chérel I
    Biol Aujourdhui; 2012; 206(4):301-12. PubMed ID: 23419257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops.
    Razi K; Muneer S
    Crit Rev Biotechnol; 2021 Aug; 41(5):669-691. PubMed ID: 33525946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles as potential hallmarks of drought stress tolerance in plants.
    Kandhol N; Jain M; Tripathi DK
    Physiol Plant; 2022 Mar; 174(2):e13665. PubMed ID: 35279848
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Jing X; Yao J; Ma X; Zhang Y; Sun Y; Xiang M; Hou P; Li N; Zhao R; Li J; Zhou X; Chen S
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32397215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.
    Guo H; Sun Y; Peng X; Wang Q; Harris M; Ge F
    J Exp Bot; 2016 Feb; 67(3):681-93. PubMed ID: 26546578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into Drought Stress Signaling in Plants and the Molecular Genetic Basis of Cotton Drought Tolerance.
    Mahmood T; Khalid S; Abdullah M; Ahmed Z; Shah MKN; Ghafoor A; Du X
    Cells; 2019 Dec; 9(1):. PubMed ID: 31906215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H
    Li J; Li Y; Yin Z; Jiang J; Zhang M; Guo X; Ye Z; Zhao Y; Xiong H; Zhang Z; Shao Y; Jiang C; Zhang H; An G; Paek NC; Ali J; Li Z
    Plant Biotechnol J; 2017 Feb; 15(2):183-196. PubMed ID: 27420922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving water use efficiency by changing hydraulic and stomatal characteristics in soybean exposed to drought: the involvement of nitric oxide.
    de Sousa LF; de Menezes-Silva PE; Lourenço LL; Galmés J; Guimarães AC; da Silva AF; Dos Reis Lima AP; Henning LMM; Costa AC; Silva FG; Farnese FDS
    Physiol Plant; 2020 Mar; 168(3):576-589. PubMed ID: 31102278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adjustment of Photosynthetic and Antioxidant Activities to Water Deficit Is Crucial in the Drought Tolerance of
    Lechowicz K; Pawłowicz I; Perlikowski D; Arasimowicz-Jelonek M; Blicharz S; Skirycz A; Augustyniak A; Malinowski R; Rapacz M; Kosmala A
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32781659
    [No Abstract]   [Full Text] [Related]  

  • 11. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants.
    Ramachandra Reddy A; Chaitanya KV; Vivekanandan M
    J Plant Physiol; 2004 Nov; 161(11):1189-202. PubMed ID: 15602811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress.
    Agurla S; Gahir S; Munemasa S; Murata Y; Raghavendra AS
    Adv Exp Med Biol; 2018; 1081():215-232. PubMed ID: 30288712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of ROS through proficient modulations of antioxidative defense system maintains the structural and functional integrity of photosynthetic apparatus and confers drought tolerance in the facultative halophyte Salvadora persica L.
    Rangani J; Panda A; Patel M; Parida AK
    J Photochem Photobiol B; 2018 Dec; 189():214-233. PubMed ID: 30396132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drought coping strategies in cotton: increased crop per drop.
    Ullah A; Sun H; Yang X; Zhang X
    Plant Biotechnol J; 2017 Mar; 15(3):271-284. PubMed ID: 28055133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term drought triggers defence mechanisms faster than ABA accumulation in the epiphytic bromeliad Acanthostachys strobilacea.
    Carvalho V; Gaspar M; Nievola C
    Plant Physiol Biochem; 2021 Mar; 160():62-72. PubMed ID: 33461051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abscisic Acid and Glycine Betaine Mediated Tolerance Mechanisms under Drought Stress and Recovery in Axonopus compressus: A New Insight.
    Nawaz M; Wang Z
    Sci Rep; 2020 Apr; 10(1):6942. PubMed ID: 32332777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pepper CaREL1, a ubiquitin E3 ligase, regulates drought tolerance via the ABA-signalling pathway.
    Lim CW; Park C; Kim JH; Joo H; Hong E; Lee SC
    Sci Rep; 2017 Mar; 7(1):477. PubMed ID: 28352121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insights on melatonin-mediated drought stress mitigation in plants.
    Tiwari RK; Lal MK; Kumar R; Chourasia KN; Naga KC; Kumar D; Das SK; Zinta G
    Physiol Plant; 2021 Jun; 172(2):1212-1226. PubMed ID: 33305363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological response to drought in radiata pine: phytohormone implication at leaf level.
    De Diego N; Pérez-Alfocea F; Cantero E; Lacuesta M; Moncaleán P
    Tree Physiol; 2012 Apr; 32(4):435-49. PubMed ID: 22499594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of the pepper protein phosphatase, CaAIPP1, and its interacting partner CaAIRF1: Modulation of ABA signalling and the drought stress response.
    Baek W; Lim CW; Lee SC
    Plant Cell Environ; 2017 Oct; 40(10):2359-2368. PubMed ID: 28742940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.