BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33847849)

  • 41. Application of Static Modeling --in the Prediction of In Vivo Drug-Drug Interactions between Rivaroxaban and Antiarrhythmic Agents Based on In Vitro Inhibition Studies.
    Cheong EJ; Goh JJ; Hong Y; Venkatesan G; Liu Y; Chiu GN; Kojodjojo P; Chan EC
    Drug Metab Dispos; 2017 Mar; 45(3):260-268. PubMed ID: 28053220
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Solitary Inhibition of the Breast Cancer Resistance Protein Efflux Transporter Results in a Clinically Significant Drug-Drug Interaction with Rosuvastatin by Causing up to a 2-Fold Increase in Statin Exposure.
    Elsby R; Martin P; Surry D; Sharma P; Fenner K
    Drug Metab Dispos; 2016 Mar; 44(3):398-408. PubMed ID: 26700956
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Perpetrator effects of ciclosporin (P-glycoprotein inhibitor) and its combination with fluconazole (CYP3A inhibitor) on the pharmacokinetics of rivaroxaban in healthy volunteers.
    Brings A; Lehmann ML; Foerster KI; Burhenne J; Weiss J; Haefeli WE; Czock D
    Br J Clin Pharmacol; 2019 Jul; 85(7):1528-1537. PubMed ID: 30912163
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biochemical interaction of anti-HCV telaprevir with the ABC transporters P-glycoprotein and breast cancer resistance protein.
    Fujita Y; Noguchi K; Suzuki T; Katayama K; Sugimoto Y
    BMC Res Notes; 2013 Nov; 6():445. PubMed ID: 24196382
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Factor Xa inhibitors in clinical practice: Comparison of pharmacokinetic profiles.
    Goto E; Horinaka S; Ishimitsu T; Kato T
    Drug Metab Pharmacokinet; 2020 Feb; 35(1):151-159. PubMed ID: 32007354
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comprehensive Exploration of Medications That Affect the Bleeding Risk of Oral Anticoagulant Users.
    Kawano Y; Nagata M; Nakamura S; Akagi Y; Suzuki T; Tsukada E; Hoshiko M; Kujirai A; Nakamatsu S; Nishikawa T; Enomoto A; Negishi K; Shimada S; Aoyama T; Mano Y
    Biol Pharm Bull; 2021; 44(5):611-619. PubMed ID: 33952817
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of physiologically-based pharmacokinetic model approach to predict pharmacokinetics and drug-drug interaction of rivaroxaban: A case study of rivaroxaban and carbamazepine.
    Ngo LT; Yang SY; Shin S; Cao DT; Van Nguyen H; Jung S; Lee JY; Lee JH; Yun HY; Chae JW
    CPT Pharmacometrics Syst Pharmacol; 2022 Nov; 11(11):1430-1442. PubMed ID: 36193622
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Absence of both MDR1 (ABCB1) and breast cancer resistance protein (ABCG2) transporters significantly alters rivaroxaban disposition and central nervous system entry.
    Gong IY; Mansell SE; Kim RB
    Basic Clin Pharmacol Toxicol; 2013 Mar; 112(3):164-70. PubMed ID: 22958812
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport.
    Dahan A; Sabit H; Amidon GL
    AAPS J; 2009 Jun; 11(2):205-13. PubMed ID: 19319690
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regional Gastrointestinal Absorption of Apixaban in Healthy Subjects.
    Byon W; Nepal S; Schuster AE; Shenker A; Frost CE
    J Clin Pharmacol; 2018 Jul; 58(7):965-971. PubMed ID: 29578609
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A universal anti-Xa assay for rivaroxaban, apixaban, and edoxaban measurements: method validation, diagnostic accuracy and external validation.
    Willekens G; Studt JD; Mendez A; Alberio L; Fontana P; Wuillemin WA; Schmidt A; Graf L; Gerber B; Bovet C; Sauter TC; Nagler M
    Br J Haematol; 2021 Jun; 193(6):1203-1212. PubMed ID: 33954979
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in vivo pharmacokinetic studies employing Bcrp1-/-/Mdr1a/1b-/- (triple-knockout) and wild-type mice.
    Marchetti S; de Vries NA; Buckle T; Bolijn MJ; van Eijndhoven MA; Beijnen JH; Mazzanti R; van Tellingen O; Schellens JH
    Mol Cancer Ther; 2008 Aug; 7(8):2280-7. PubMed ID: 18723475
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The real world use of combined P-glycoprotein and moderate CYP3A4 inhibitors with rivaroxaban or apixaban increases bleeding.
    Hanigan S; Das J; Pogue K; Barnes GD; Dorsch MP
    J Thromb Thrombolysis; 2020 May; 49(4):636-643. PubMed ID: 31925665
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [The role of direct oral anticoagulants in the management of cancer-associated thrombosis in 2020].
    Auditeau C; Talbot A; Blandinières A; Smadja DM; Gendron N
    Bull Cancer; 2020 May; 107(5):574-585. PubMed ID: 32252973
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Different Involvement of OAT in Renal Disposition of Oral Anticoagulants Rivaroxaban, Dabigatran, and Apixaban.
    Tsuruya Y; Nakanishi T; Komori H; Wang X; Ishiguro N; Kito T; Ikukawa K; Kishimoto W; Ito S; Schaefer O; Ebner T; Yamamura N; Kusuhara H; Tamai I
    J Pharm Sci; 2017 Sep; 106(9):2524-2534. PubMed ID: 28456731
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of Anti-Xa Activity in Patients Receiving Apixaban or Rivaroxaban.
    Bookstaver DA; Sparks K; Pybus BS; Davis DK; Marcsisin SR; Sousa JC
    Ann Pharmacother; 2018 Mar; 52(3):251-256. PubMed ID: 29047306
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Generation and Characterization of a Breast Cancer Resistance Protein Humanized Mouse Model.
    Dallas S; Salphati L; Gomez-Zepeda D; Wanek T; Chen L; Chu X; Kunta J; Mezler M; Menet MC; Chasseigneaux S; Declèves X; Langer O; Pierre E; DiLoreto K; Hoft C; Laplanche L; Pang J; Pereira T; Andonian C; Simic D; Rode A; Yabut J; Zhang X; Scheer N
    Mol Pharmacol; 2016 May; 89(5):492-504. PubMed ID: 26893303
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intestinal breast cancer resistance protein (BCRP) requires Janus kinase 3 activity for drug efflux and barrier functions in obesity.
    Mishra J; Simonsen R; Kumar N
    J Biol Chem; 2019 Nov; 294(48):18337-18348. PubMed ID: 31653704
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Renal Drug Transporters and Drug Interactions.
    Ivanyuk A; Livio F; Biollaz J; Buclin T
    Clin Pharmacokinet; 2017 Aug; 56(8):825-892. PubMed ID: 28210973
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In Vitro Assessment of the Drug-Drug Interaction Potential of Verinurad and Its Metabolites as Substrates and Inhibitors of Metabolizing Enzymes and Drug Transporters.
    Gopaul VS; Vildhede A; Andersson TB; Erlandsson F; Lee CA; Johansson S; Hilgendorf C
    J Pharmacol Exp Ther; 2021 Aug; 378(2):108-123. PubMed ID: 34074714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.