These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33847951)

  • 1. Single-Molecule Fluorescence Methods to Study Protein Exchange Kinetics in Supramolecular Complexes.
    Spinks RR; Spenkelink LM; van Oijen AM
    Methods Mol Biol; 2021; 2281():49-65. PubMed ID: 33847951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stoichiometric analysis of protein complexes by cell fusion and single molecule imaging.
    Singh A; Van Slyke AL; Sirenko M; Song A; Kammermeier PJ; Zipfel WR
    Sci Rep; 2020 Sep; 10(1):14866. PubMed ID: 32913201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence microscopy for visualizing single-molecule protein dynamics.
    Yokota H
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129362. PubMed ID: 31078674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FluoSim: simulator of single molecule dynamics for fluorescence live-cell and super-resolution imaging of membrane proteins.
    Lagardère M; Chamma I; Bouilhol E; Nikolski M; Thoumine O
    Sci Rep; 2020 Nov; 10(1):19954. PubMed ID: 33203884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking single particles for hours via continuous DNA-mediated fluorophore exchange.
    Stehr F; Stein J; Bauer J; Niederauer C; Jungmann R; Ganzinger K; Schwille P
    Nat Commun; 2021 Jul; 12(1):4432. PubMed ID: 34290254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shining a Spotlight on DNA: Single-Molecule Methods to Visualise DNA.
    Kaur G; Lewis JS; van Oijen AM
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30704053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation and Analysis of RAD51 Nucleation Dynamics at Single-Monomer Resolution.
    Subramanyam S; Kinz-Thompson CD; Gonzalez RL; Spies M
    Methods Enzymol; 2018; 600():201-232. PubMed ID: 29458759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Multiorder Time-Correlation Functions (TCFs) To Elucidate Biomolecular Reaction Pathways from Microsecond Single-Molecule Fluorescence Experiments.
    Phelps C; Israels B; Marsh MC; von Hippel PH; Marcus AH
    J Phys Chem B; 2016 Dec; 120(51):13003-13016. PubMed ID: 27992233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-molecule visualization of fast polymerase turnover in the bacterial replisome.
    Lewis JS; Spenkelink LM; Jergic S; Wood EA; Monachino E; Horan NP; Duderstadt KE; Cox MM; Robinson A; Dixon NE; van Oijen AM
    Elife; 2017 Apr; 6():. PubMed ID: 28432790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TIRF-Based Single-Molecule Detection of the RecA Presynaptic Filament Dynamics.
    Kim SH
    Methods Enzymol; 2018; 600():233-253. PubMed ID: 29458760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule pull-down for investigating protein-nucleic acid interactions.
    Fareh M; Loeff L; Szczepaniak M; Haagsma AC; Yeom KH; Joo C
    Methods; 2016 Aug; 105():99-108. PubMed ID: 27017911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Single-Molecule Localization Microscopy (qSMLM) of Membrane Proteins Based on Kinetic Analysis of Fluorophore Blinking Cycles.
    Fricke F; Beaudouin J; Malkusch S; Eils R; Heilemann M
    Methods Mol Biol; 2017; 1663():115-126. PubMed ID: 28924663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multicolor Single-Molecule FRET Approach to Study Protein Dynamics and Interactions Simultaneously.
    Götz M; Wortmann P; Schmid S; Hugel T
    Methods Enzymol; 2016; 581():487-516. PubMed ID: 27793290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent Biosensors Based on Single-Molecule Counting.
    Ma F; Li Y; Tang B; Zhang CY
    Acc Chem Res; 2016 Sep; 49(9):1722-30. PubMed ID: 27583695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Molecule Analysis of Replication Protein A-DNA Interactions.
    Bain FE; Fischer LA; Chen R; Wold MS
    Methods Enzymol; 2018; 600():439-461. PubMed ID: 29458769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the Sensitivity of Fluorescence-Based Immunoassays by Photobleaching the Autofluorescence of Magnetic Beads.
    Roth S; Hadass O; Cohen M; Verbarg J; Wilsey J; Danielli A
    Small; 2019 Jan; 15(3):e1803751. PubMed ID: 30411493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent Labeling of Proteins in Whole Cell Extracts for Single-Molecule Imaging.
    Hansen SR; Rodgers ML; Hoskins AA
    Methods Enzymol; 2016; 581():83-104. PubMed ID: 27793294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemistry of Photosensitive Fluorophores for Single-Molecule Localization Microscopy.
    Jradi FM; Lavis LD
    ACS Chem Biol; 2019 Jun; 14(6):1077-1090. PubMed ID: 30997987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocol for single-molecule fluorescence recovery after photobleaching microscopy to analyze the dynamics and spatial locations of nuclear transmembrane proteins in live cells.
    Tingey M; Li Y; Yang W
    STAR Protoc; 2021 Jun; 2(2):100490. PubMed ID: 34007970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence Recovery After Photo-Bleaching (FRAP) and Fluorescence Loss in Photo-Bleaching (FLIP) Experiments to Study Protein Dynamics During Budding Yeast Cell Division.
    Bolognesi A; Sliwa-Gonzalez A; Prasad R; Barral Y
    Methods Mol Biol; 2016; 1369():25-44. PubMed ID: 26519303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.