BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33847981)

  • 21. Standardized Markerless Gene Integration for Pathway Engineering in Yarrowia lipolytica.
    Schwartz C; Shabbir-Hussain M; Frogue K; Blenner M; Wheeldon I
    ACS Synth Biol; 2017 Mar; 6(3):402-409. PubMed ID: 27989123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Guide RNA Engineering Enables Dual Purpose CRISPR-Cpf1 for Simultaneous Gene Editing and Gene Regulation in
    Ramesh A; Ong T; Garcia JA; Adams J; Wheeldon I
    ACS Synth Biol; 2020 Apr; 9(4):967-971. PubMed ID: 32208677
    [No Abstract]   [Full Text] [Related]  

  • 23. Gene Excision by Dual-Guide CRISPR-Cas9.
    Spagnuolo M; Blenner M
    Methods Mol Biol; 2021; 2307():85-94. PubMed ID: 33847983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica.
    Schwartz C; Frogue K; Ramesh A; Misa J; Wheeldon I
    Biotechnol Bioeng; 2017 Dec; 114(12):2896-2906. PubMed ID: 28832943
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system.
    Shi TQ; Huang H; Kerkhoven EJ; Ji XJ
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9541-9548. PubMed ID: 30238143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects.
    Raschmanová H; Weninger A; Glieder A; Kovar K; Vogl T
    Biotechnol Adv; 2018; 36(3):641-665. PubMed ID: 29331410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advances and opportunities in gene editing and gene regulation technology for Yarrowia lipolytica.
    Ganesan V; Spagnuolo M; Agrawal A; Smith S; Gao D; Blenner M
    Microb Cell Fact; 2019 Nov; 18(1):208. PubMed ID: 31783869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validating genome-wide CRISPR-Cas9 function improves screening in the oleaginous yeast Yarrowia lipolytica.
    Schwartz C; Cheng JF; Evans R; Schwartz CA; Wagner JM; Anglin S; Beitz A; Pan W; Lonardi S; Blenner M; Alper HS; Yoshikuni Y; Wheeldon I
    Metab Eng; 2019 Sep; 55():102-110. PubMed ID: 31216436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide functional screens enable the prediction of high activity CRISPR-Cas9 and -Cas12a guides in Yarrowia lipolytica.
    Baisya D; Ramesh A; Schwartz C; Lonardi S; Wheeldon I
    Nat Commun; 2022 Feb; 13(1):922. PubMed ID: 35177617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Golden Gate-based metabolic engineering strategy for wild-type strains of Yarrowia lipolytica.
    Egermeier M; Sauer M; Marx H
    FEMS Microbiol Lett; 2019 Feb; 366(4):. PubMed ID: 30698703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Efficiency Multiplexed Cytosine Base Editors for Natural Product Synthesis in
    Ganesan V; Monteiro L; Pedada D; Stohr A; Blenner M
    ACS Synth Biol; 2023 Oct; 12(10):3082-3091. PubMed ID: 37768786
    [No Abstract]   [Full Text] [Related]  

  • 32. Advancing Yarrowia lipolytica as a superior biomanufacturing platform by tuning gene expression using promoter engineering.
    Sun ML; Shi TQ; Lin L; Ledesma-Amaro R; Ji XJ
    Bioresour Technol; 2022 Mar; 347():126717. PubMed ID: 35031438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of an efficient CRISPR-iCas9 system in Yarrowia lipolytica for the biosynthesis of carotenoids.
    Chen QH; Qian YD; Niu YJ; Hu CY; Meng YH
    Appl Microbiol Biotechnol; 2023 Oct; 107(20):6299-6313. PubMed ID: 37642716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expansion of YALIcloneHR toolkit for Yarrowia lipolytica combined with Golden Gate and CRISPR technology.
    Shen Q; Yan F; Li YW; Wang J; Ji J; Yan WX; He DC; Song P; Shi TQ
    Biotechnol Lett; 2024 Feb; 46(1):37-46. PubMed ID: 38064043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review of synthetic biology tools in Yarrowia lipolytica.
    Cao L; Li J; Yang Z; Hu X; Wang P
    World J Microbiol Biotechnol; 2023 Mar; 39(5):129. PubMed ID: 36944859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new approach to Cas9-based genome editing in Aspergillus niger that is precise, efficient and selectable.
    Leynaud-Kieffer LMC; Curran SC; Kim I; Magnuson JK; Gladden JM; Baker SE; Simmons BA
    PLoS One; 2019; 14(1):e0210243. PubMed ID: 30653574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome Editing in Y. lipolytica Using TALENs.
    Rigouin C; Croux C; Dubois G; Daboussi F; Bordes F
    Methods Mol Biol; 2021; 2307():25-39. PubMed ID: 33847980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Novel Cre/
    Zhou Q; Jiao L; Li W; Hu Z; Li Y; Zhang H; Yang M; Xu L; Yan Y
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639080
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.