These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33847983)

  • 1. Gene Excision by Dual-Guide CRISPR-Cas9.
    Spagnuolo M; Blenner M
    Methods Mol Biol; 2021; 2307():85-94. PubMed ID: 33847983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Gene Excision and Integration by Dual-Guide CRISPR-Cas9.
    Spagnuolo M; Blenner M
    Methods Mol Biol; 2021; 2307():69-83. PubMed ID: 33847982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica.
    Schwartz C; Wheeldon I
    Methods Mol Biol; 2018; 1772():327-345. PubMed ID: 29754237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guide RNA Design for Genome-Wide CRISPR Screens in Yarrowia lipolytica.
    Ramesh A; Wheeldon I
    Methods Mol Biol; 2021; 2307():123-137. PubMed ID: 33847986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system.
    Gao S; Tong Y; Wen Z; Zhu L; Ge M; Chen D; Jiang Y; Yang S
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1085-93. PubMed ID: 27349768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A set of Yarrowia lipolytica CRISPR/Cas9 vectors for exploiting wild-type strain diversity.
    Larroude M; Trabelsi H; Nicaud JM; Rossignol T
    Biotechnol Lett; 2020 May; 42(5):773-785. PubMed ID: 31974649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic RNA Polymerase III Promoters Facilitate High-Efficiency CRISPR-Cas9-Mediated Genome Editing in Yarrowia lipolytica.
    Schwartz CM; Hussain MS; Blenner M; Wheeldon I
    ACS Synth Biol; 2016 Apr; 5(4):356-9. PubMed ID: 26714206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR Interference and Activation to Modulate Transcription in Yarrowia lipolytica.
    Misa J; Schwartz C
    Methods Mol Biol; 2021; 2307():95-109. PubMed ID: 33847984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplex Gene Disruption by Targeted Base Editing of Yarrowia lipolytica Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System.
    Bae SJ; Park BG; Kim BG; Hahn JS
    Biotechnol J; 2020 Jan; 15(1):e1900238. PubMed ID: 31657874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guide RNA Engineering Enables Dual Purpose CRISPR-Cpf1 for Simultaneous Gene Editing and Gene Regulation in
    Ramesh A; Ong T; Garcia JA; Adams J; Wheeldon I
    ACS Synth Biol; 2020 Apr; 9(4):967-971. PubMed ID: 32208677
    [No Abstract]   [Full Text] [Related]  

  • 11. Dual CRISPR-Cas9 Cleavage Mediated Gene Excision and Targeted Integration in Yarrowia lipolytica.
    Gao D; Smith S; Spagnuolo M; Rodriguez G; Blenner M
    Biotechnol J; 2018 Sep; 13(9):e1700590. PubMed ID: 29809313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving CRISPR/Cas9-mediated genome editing efficiency in Yarrowia lipolytica using direct tRNA-sgRNA fusions.
    Abdel-Mawgoud AM; Stephanopoulos G
    Metab Eng; 2020 Nov; 62():106-115. PubMed ID: 32758536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide functional screens enable the prediction of high activity CRISPR-Cas9 and -Cas12a guides in Yarrowia lipolytica.
    Baisya D; Ramesh A; Schwartz C; Lonardi S; Wheeldon I
    Nat Commun; 2022 Feb; 13(1):922. PubMed ID: 35177617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A CRISPR/Cas9-Mediated, Homology-Independent Tool Developed for Targeted Genome Integration in Yarrowia lipolytica.
    Cui Z; Zheng H; Zhang J; Jiang Z; Zhu Z; Liu X; Qi Q; Hou J
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33452022
    [No Abstract]   [Full Text] [Related]  

  • 15. Implementing CRISPR-Cas12a for Efficient Genome Editing in Yarrowia lipolytica.
    Yang Z; Xu P
    Methods Mol Biol; 2021; 2307():111-121. PubMed ID: 33847985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EasyCloneYALI: CRISPR/Cas9-Based Synthetic Toolbox for Engineering of the Yeast Yarrowia lipolytica.
    Holkenbrink C; Dam MI; Kildegaard KR; Beder J; Dahlin J; Doménech Belda D; Borodina I
    Biotechnol J; 2018 Sep; 13(9):e1700543. PubMed ID: 29377615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T7 Polymerase Expression of Guide RNAs in vivo Allows Exportable CRISPR-Cas9 Editing in Multiple Yeast Hosts.
    Morse NJ; Wagner JM; Reed KB; Gopal MR; Lauffer LH; Alper HS
    ACS Synth Biol; 2018 Apr; 7(4):1075-1084. PubMed ID: 29565571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic biology tools for engineering Yarrowia lipolytica.
    Larroude M; Rossignol T; Nicaud JM; Ledesma-Amaro R
    Biotechnol Adv; 2018 Dec; 36(8):2150-2164. PubMed ID: 30315870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of wild-type Yarrowia lipolytica IMUFRJ 50682 auxotrophic mutants using dual CRISPR/Cas9 strategy for novel biotechnological approaches.
    de Souza CP; Ribeiro BD; Zarur Coelho MA; Almeida RV; Nicaud JM
    Enzyme Microb Technol; 2020 Oct; 140():109621. PubMed ID: 32912681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic Tools for Streamlined and Accelerated Pathway Engineering in Yarrowia lipolytica.
    Wong L; Holdridge B; Engel J; Xu P
    Methods Mol Biol; 2019; 1927():155-177. PubMed ID: 30788791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.