These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 33848124)

  • 41. Ultralight, Recoverable, and High-Temperature-Resistant SiC Nanowire Aerogel.
    Su L; Wang H; Niu M; Fan X; Ma M; Shi Z; Guo SW
    ACS Nano; 2018 Apr; 12(4):3103-3111. PubMed ID: 29513010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil-water separation.
    Xu Z; Zhou H; Tan S; Jiang X; Wu W; Shi J; Chen P
    Beilstein J Nanotechnol; 2018; 9():508-519. PubMed ID: 29527428
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In situ Synthesis of Biomimetic Silica Nanofibrous Aerogels with Temperature-Invariant Superelasticity over One Million Compressions.
    Wang F; Dou L; Dai J; Li Y; Huang L; Si Y; Yu J; Ding B
    Angew Chem Int Ed Engl; 2020 May; 59(21):8285-8292. PubMed ID: 32043757
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultralight, highly compressible, hydrophobic and anisotropic lamellar carbon aerogels from graphene/polyvinyl alcohol/cellulose nanofiber aerogel as oil removing absorbents.
    Zhou L; Xu Z
    J Hazard Mater; 2020 Apr; 388():121804. PubMed ID: 31843408
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Flexible Aerogel Materials: A Review on Revolutionary Flexibility Strategies and the Multifunctional Applications.
    Hou X; Chen J; Chen Z; Yu D; Zhu S; Liu T; Chen L
    ACS Nano; 2024 May; 18(18):11525-11559. PubMed ID: 38655632
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q; Cai Z; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrathin Free-Standing Bombyx mori Silk Nanofibril Membranes.
    Ling S; Jin K; Kaplan DL; Buehler MJ
    Nano Lett; 2016 Jun; 16(6):3795-800. PubMed ID: 27076389
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Green Approach to Improving the Strength and Flame Retardancy of Poly(vinyl alcohol)/Clay Aerogels: Incorporating Biobased Gelatin.
    Wang YT; Zhao HB; Degracia K; Han LX; Sun H; Sun M; Wang YZ; Schiraldi DA
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42258-42265. PubMed ID: 29140679
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Robust polyimide nano/microfibre aerogels welded by solvent-vapour for environmental applications.
    Shen Y; Li D; Deng B; Liu Q; Liu H; Wu T
    R Soc Open Sci; 2019 Aug; 6(8):190596. PubMed ID: 31598247
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Versatile Thermal-Solidifying Direct-Write Assembly towards Heat-Resistant 3D-Printed Ceramic Aerogels for Thermal Insulation.
    Wang L; Feng J; Luo Y; Jiang Y; Zhang G; Feng J
    Small Methods; 2022 May; 6(5):e2200045. PubMed ID: 35344287
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning.
    Cheng X; Liu YT; Si Y; Yu J; Ding B
    Nat Commun; 2022 May; 13(1):2637. PubMed ID: 35552405
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Water-Induced Self-Assembly and
    Fan Q; Ou R; Hao X; Deng Q; Liu Z; Sun L; Zhang C; Guo C; Bai X; Wang Q
    ACS Nano; 2022 Jun; 16(6):9062-9076. PubMed ID: 35653439
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Top-Down Extraction of Silk Protein Nanofibers by Natural Deep Eutectic Solvents and Application in Dispersion of Multiwalled Carbon Nanotubes for Wearable Sensing.
    Tan X; Wang Y; Du W; Mu T
    ChemSusChem; 2020 Jan; 13(2):321-327. PubMed ID: 31729788
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anisotropic and hierarchical SiC@SiO
    Su L; Wang H; Niu M; Dai S; Cai Z; Yang B; Huyan H; Pan X
    Sci Adv; 2020 Jun; 6(26):eaay6689. PubMed ID: 32637589
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Correlating Synthesis Parameters to Morphological Entities: Predictive Modeling of Biopolymer Aerogels.
    Rege A; Preibisch I; Schestakow M; Ganesan K; Gurikov P; Milow B; Smirnova I; Itskov M
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30205623
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Production of Bacterial Cellulose Aerogels With Improved Physico-Mechanical Properties and Antibacterial Effect.
    Revin VV; Nazarova NB; Tsareva EE; Liyaskina EV; Revin VD; Pestov NA
    Front Bioeng Biotechnol; 2020; 8():603407. PubMed ID: 33344435
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Light-induced levitation of ultralight carbon aerogels via temperature control.
    Yanagi R; Takemoto R; Ono K; Ueno T
    Sci Rep; 2021 Jun; 11(1):12413. PubMed ID: 34127746
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Silica-silk fibroin hybrid (bio)aerogels: two-step versus one-step hybridization.
    Maleki H; Huesing N
    J Solgel Sci Technol; 2021; 98(2):430-438. PubMed ID: 34720431
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Silk fibroin aerogels: potential scaffolds for tissue engineering applications.
    Mallepally RR; Marin MA; Surampudi V; Subia B; Rao RR; Kundu SC; McHugh MA
    Biomed Mater; 2015 May; 10(3):035002. PubMed ID: 25953953
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Shapeable Aerogels of Metal-Organic-Frameworks Supported by Aramid Nanofibrils for Efficient Adsorption and Interception.
    Zong L; Yang Y; Yang H; Wu X
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7295-7301. PubMed ID: 31951382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.