These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 33848129)
21. Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes. Zhang Y; Li F; Zhang Q; Li J; Liu Q Sci Total Environ; 2014 Aug; 490():213-22. PubMed ID: 24858219 [TBL] [Abstract][Full Text] [Related]
22. Land use change impacts on the amount and quality of recharge water in the loess tablelands of China. Huang Y; Chang Q; Li Z Sci Total Environ; 2018 Jul; 628-629():443-452. PubMed ID: 29453173 [TBL] [Abstract][Full Text] [Related]
23. Intensive rice agriculture deteriorates the quality of shallow groundwater in a typical agricultural catchment in subtropical central China. Wang Y; Li Y; Li Y; Liu F; Liu X; Gong D; Ma Q; Li W; Wu J Environ Sci Pollut Res Int; 2015 Sep; 22(17):13278-90. PubMed ID: 25940468 [TBL] [Abstract][Full Text] [Related]
24. N and P behaviour in alluvial aquifers and in the soil solution of their catchment areas: How land use and the physical environment contribute to diffuse pollution. Arauzo M; Valladolid M; García G; Andries DM Sci Total Environ; 2022 Jan; 804():150056. PubMed ID: 34798720 [TBL] [Abstract][Full Text] [Related]
25. Distribution and molecular chemodiversity of dissolved organic nitrogen in the vadose zone-groundwater system of a fluvial plain, northern China: Implications for understanding its loss pathway to groundwater. Nai H; Xin J; Liu Y; Zheng X; Lin Z Sci Total Environ; 2020 Jun; 723():137928. PubMed ID: 32208209 [TBL] [Abstract][Full Text] [Related]
26. Residence time as a key for comprehensive assessment of the relationship between changing land use and nitrates in regional groundwater systems. Cao Y; Tang C; Song X; Liu C; Zhang Y Environ Sci Process Impacts; 2013 Apr; 15(4):876-85. PubMed ID: 23503885 [TBL] [Abstract][Full Text] [Related]
27. The long term effect of agricultural, vadose zone and climatic factors on nitrate contamination in the Nebraska's groundwater system. Juntakut P; Snow DD; Haacker EMK; Ray C J Contam Hydrol; 2019 Jan; 220():33-48. PubMed ID: 30502887 [TBL] [Abstract][Full Text] [Related]
28. Environmental assessment of agricultural activities and groundwater nitrate pollution susceptibility: a regional case study (Southwestern Romania). Mititelu-Ionuș O; Simulescu D; Popescu SM Environ Monit Assess; 2019 Jul; 191(8):501. PubMed ID: 31327079 [TBL] [Abstract][Full Text] [Related]
29. Assessing the impact of dairy waste lagoons on groundwater quality using a spatial analysis of vadose zone and groundwater information in a coastal phreatic aquifer. Baram S; Kurtzman D; Ronen Z; Peeters A; Dahan O J Environ Manage; 2014 Jan; 132():135-44. PubMed ID: 24295724 [TBL] [Abstract][Full Text] [Related]
30. Unveiling microbial community and function involved in anammox in paddy vadose under groundwater irrigation. Li H; Liang S; Chi Z; Wu H; Yan B Sci Total Environ; 2022 Nov; 849():157876. PubMed ID: 35940267 [TBL] [Abstract][Full Text] [Related]
31. Can nitrate contaminated groundwater be remediated by optimizing flood irrigation rate with high nitrate water in a desert oasis using the WHCNS model? Liang H; Qi Z; Hu K; Prasher SO; Zhang Y J Environ Manage; 2016 Oct; 181():16-25. PubMed ID: 27294676 [TBL] [Abstract][Full Text] [Related]
32. Global patterns of nitrate storage in the vadose zone. Ascott MJ; Gooddy DC; Wang L; Stuart ME; Lewis MA; Ward RS; Binley AM Nat Commun; 2017 Nov; 8(1):1416. PubMed ID: 29123090 [TBL] [Abstract][Full Text] [Related]
33. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain. Ledoux E; Gomez E; Monget JM; Viavattene C; Viennot P; Ducharne A; Benoit M; Mignolet C; Schott C; Mary B Sci Total Environ; 2007 Apr; 375(1-3):33-47. PubMed ID: 17275068 [TBL] [Abstract][Full Text] [Related]
34. A critical review of the central role of microbial regulation in the nitrogen biogeochemical process: New insights for controlling groundwater nitrogen contamination. Liu S; Zheng T; Li Y; Zheng X J Environ Manage; 2023 Feb; 328():116959. PubMed ID: 36473348 [TBL] [Abstract][Full Text] [Related]
35. Nitrate in shallow groundwater in typical agricultural and forest ecosystems in China, 2004-2010. Zhang X; Xu Z; Sun X; Dong W; Ballantine D J Environ Sci (China); 2013 May; 25(5):1007-14. PubMed ID: 24218832 [TBL] [Abstract][Full Text] [Related]
36. Health risk assessment of groundwater nitrogen pollution in Songnen Plain. Wu J; Bian J; Wan H; Ma Y; Sun X Ecotoxicol Environ Saf; 2021 Jan; 207():111245. PubMed ID: 32956896 [TBL] [Abstract][Full Text] [Related]
37. [Nitrate contamination of the groundwater of the Akkar Plain in northern Lebanon]. Halwani J; Baroudi BO; Wartel M Sante; 1999; 9(4):219-23. PubMed ID: 10623868 [TBL] [Abstract][Full Text] [Related]
38. Trend reversal of nitrate in Danish groundwater--a reflection of agricultural practices and nitrogen surpluses since 1950. Hansen B; Thorling L; Dalgaard T; Erlandsen M Environ Sci Technol; 2011 Jan; 45(1):228-34. PubMed ID: 21138289 [TBL] [Abstract][Full Text] [Related]
39. Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Pastén-Zapata E; Ledesma-Ruiz R; Harter T; Ramírez AI; Mahlknecht J Sci Total Environ; 2014 Feb; 470-471():855-64. PubMed ID: 24200723 [TBL] [Abstract][Full Text] [Related]
40. Assessment of the risks of N-loss to groundwater from data on N-balance surplus in Spanish crops: An empirical basis to identify Nitrate Vulnerable Zones. Arauzo M; García G; Valladolid M Sci Total Environ; 2019 Dec; 696():133713. PubMed ID: 31461691 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]